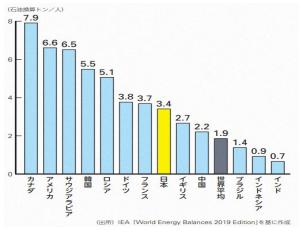
1. カーボンニュートラルを目指す意義と目的

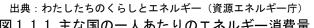
1.1. カーボンニュートラルを目指す意義

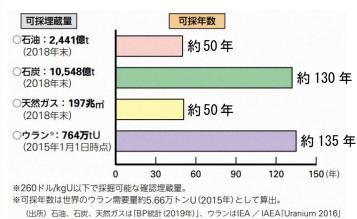
1.1.1. 自然災害の頻発化・激甚化への対応

近年、世界中でみられる自然災害の頻発化・ 激甚化は、地球温暖化がその要因となっていま す。地球温暖化は国内でも同様であり、今後さ らに温暖化が進んでしまうと猛暑による熱中 症や集中豪雨による水害等に遭遇するリスク が高まることが想定されます。

地球温暖化は、産業革命以降に人々が地中に ある石油や石炭、天然ガスなどの化石燃料をエ ネルギー源として利用し、排出された二酸化炭 素 (以下 CO₂ と表記) 等の温室効果ガスが大気 中に増加したためとされています。長期にわた り資源を使い続けた私たち人間は、温室効果ガ スの排出抑制や地球温暖化防止の努力をして いかなくてはなりません。

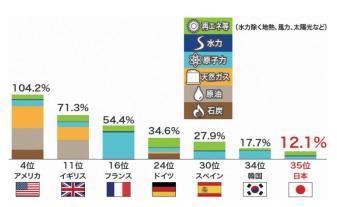

出典:新潟日報ホームページ




1.1.2. エネルギー資源の大量消費による資源不足への対応

私たちは、普段の生活・生産活動の中で多くの電気や石油、ガソリンといったエネル ギー資源を利用しています。主な国の一人あたりのエネルギー消費量(2017年時点)を みてみると、日本は世界平均に比べて約1.8倍多く消費しています。

地球の恵みであるエネルギー資源を大量消費する私たちの社会活動により、そう遠く ない未来に資源不足になる可能性があります。



出典:わたしたちのくらしとエネルギー(資源エネルギー庁) 図 1.1.1 主な国の一人あたりのエネルギー消費量 図 1.1.2 エネルギー資源の可採埋蔵量と可採年数

日本は、エネルギー自給率が 12% (2019 年時点) と低く、多くの資源を海外からの輸入に頼っています。また、ロシアによるウクライナ侵攻の影響で石油価格が高騰したように、海外の有事が日本のエネルギー資源調達に影響を及ぼしています。

今後、私たちが資源不足に陥らないためにも、温室効果ガスを排出する社会活動や資源調達のあり方を見直し、省エネや再生可能エネルギーの推進や地域資源の活用・循環に舵を切る必要があります。

資料: IEA「World ENERGY BALANCES 2020」の 2019 推計値 ※日本はエネ庁「総合エネルギー統計」2019 確定値。順位は OECD 内の順位。

出典:資源エネルギー庁

図 1.1.3 主要国のエネルギー自給率比較

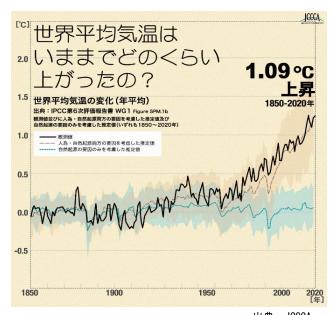
1.1.3. 地域資源を活用したエネルギーの持続的な利用

温室効果ガス排出量をゼロに近づけつつ、エネルギーを持続的に利用するため、世界中でエネルギー消費の抑制(省エネ)や、再生可能エネルギーの導入・開発が進められています。

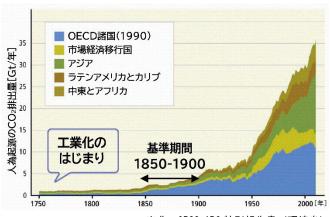
一方で、再生可能エネルギーの発電所を建設するための開発行為が行き過ぎると、自然環境や生活環境に負の影響が発生する恐れもあります。

長岡市は豊富な自然資源や全国有数の米どころとなる優良な農地を有しています。こうした財産を保全し、後世に継承しつつ、省エネや再生可能エネルギーへの転換に取り組むには、環境と経済活動のバランスを意識することが重要です。

本戦略を通じて、長岡市の 2050 年カーボンニュートラルの実現に向けて、私たちが取り組むべき内容と脱炭素のシナリオを想定します。それにより、省エネ活動や再生可能エネルギーへの転換を具体化し、将来のために今私たちに何ができるのかを考える、できるところから行動に移すきっかけにして欲しいと考えています。


その上で、長岡市の高度なものづくり産業や自然資源といった地域資源を賢く活用し、 その結果生じた経済効果を地域に還元する、それを市民・事業者・行政が協働で取り組 んでいくことが長岡市の環境と経済の好循環につながるものと考えています。

1.2. 長岡市カーボンニュートラル チャレンジ戦略 2050 策定の背景と目的


地球温暖化対策は、国際社会が一体となって直ちに取り組むべき重要な課題です。 2015年12月に、2020年以降の温室効果ガス排出削減等に向けた新たな国際枠組みとして、世界の平均気温上昇を産業革命前と比べて1.5°Cに抑える努力をするパリ協定が採択されました。

これを科学的知見に基づき IPCC*特別報告書(2018年)で、2050年頃には温室効果ガス排出量を実質ゼロとすることが必要との見解が示されました。この報告書を受け、世界各国で「2050年カーボンニュートラル」の実現を目標に掲げる動きが広がりました。

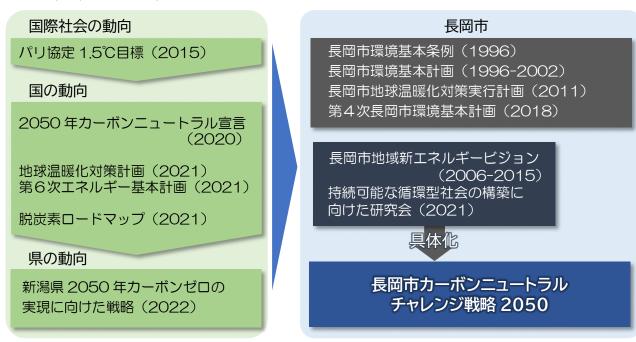
国は 2020 年 10 月に「2050 年カーボンニュートラル」の宣言を行い、2021 年 6 月に地域脱炭素ロードマップを策定して、2030年度に温室効果ガスを 2013年度から 46%削減、さらに 50%の高みに向けて挑戦を続けると表明しました。県も 2022年 3 月に「新潟県 2050年カーボンゼロの実現に向けた戦略」を策定し、国の 2030年度目標に合わせた脱炭素シナリオと重点施策を示しました。

出典: JCCCA 図 1.2.1 世界の平均気温の変化

出典: IPCC AR6 特別報告書(環境省) 図 1.2.2 世界の CO₂排出量の推移

長岡市においては、2006(平成 18)年から「長岡市地域新エネルギービジョン」を策定し、小中学校への太陽光パネルの設置をはじめ、生ごみバイオガスプラントの導入や廃食油の BDF 製造などのエネルギー政策を進めてきたところです。そして、国や県の動きを踏まえ、2021年に「持続可能な循環型社会の構築に向けた研究会(以下、研究会)」を立ち上げ、長岡の地域資源を生かしたエネルギー活用に関する議論を開始してきました。

本戦略である「長岡市カーボンニュートラル チャレンジ戦略 2050」は、本市における 2050 年カーボンニュートラル実現に向け、2030 年度までに取り組むエネルギー政策 の基本方針と具体的にチャレンジするプロジェクトを取りまとめたものです。


※)IPCC: 気候変動に関する政府間パネル (Intergovernmental Panel on Climate Change) 気候変動に関する最新の知見を科学的に評価する国際的な学術機関 2022 年 3 月現在、195 の国と地域が参加

1.3. 戦略の基本的事項

1.3.1. 戦略の位置づけ

本戦略は、上位計画である「第4次長岡市環境基本計画」をはじめ、「長岡市地球温暖化対策実行計画(区域施策編)」に沿って、研究会が示した「2050年カーボンニュートラルの実現に向けた提案」の具体的な取組を示すものです。

また、「2050 年カーボンニュートラル」に向けた目標値の設定等は、国際社会や国、 県の環境エネルギー政策の動向と整合を図るとともに、SDGs (持続可能な開発目標)の 理念を視野に入れて策定するものとします。

1.3.2. 戦略の対象期間

本戦略の対象期間は、カーボンニュートラル実現に向けた国・県の計画を踏まえ、2050年までとし、10年ごとに3つに区切ります。2030年度までの第1期は、温室効果ガスを2013年度比46%削減することを目標に掲げ、技術的にも即戦力と評価されている太陽光発電の導入と長岡産天然ガスの地消地産を軸に進めます。

さらに、2040年、2050年に向けて、水素やメタネーション*、バイオ技術の社会実装の進捗に合わせ、戦略の点検・評価を行い、適切に計画の見直しを進めていきます。

※)メタネーション: 002 と水素を反応させてメタンを合成する技術。メタンの合成に 002 を使うことで、排出した 002 を相殺しカーボンニュートラル実現に貢献する。

2. 長岡市を取り巻く温室効果ガス、エネルギーの状況

2.1. 温室効果ガス排出量の状況

2.1.1. 温室効果ガス排出量の推移

本市で排出された温室効果ガスを CO₂ 排出量に換算した値で推移を示します。

温室効果ガス排出量は、2007年度以降減少傾向にありましたが、2011年の東日本大震災を契機とした原子力発電所の運用停止の影響により、火力発電への依存度が高まったことで増加傾向に転じました。

本戦略の基準年である 2013 年度以降は 省エネなどのさまざまな取組により再び減 少傾向に転じており、直近の 2019 年度ま でに基準年度比 12.9%減少しています。

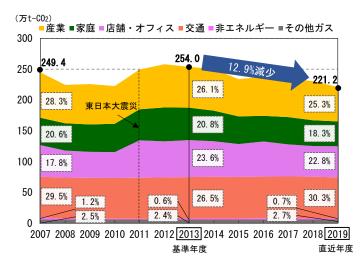
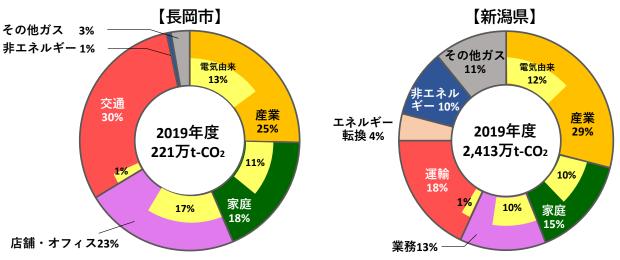



図 2.1.1 温室効果ガス排出量の推移

2.1.2. 各部門の温室効果ガス排出構造

本市における 2019 年度の温室効果ガス排出量は、221 万 t- CO_2 となっています。電気使用による CO_2 排出量の割合は 42% と、新潟県の 33%に比べて高くなっています。再生可能エネルギーは電気を作るのにほとんど CO_2 を排出しないため、再生可能エネルギーの積極的な導入を進めることは、長岡市の CO_2 排出削減に大きく貢献します。

分野別の温室効果ガス排出構造をみると、新潟県に比べて家庭や店舗・オフィス部門、 交通部門の割合が高く、非エネルギー部門やその他ガスの割合が低くなっています。

- ※) 新潟県の温室効果ガス排出量: (出典) 新潟県 2050 年カーボンゼロの実現に向けた戦略
- ※)非エネルギー部門:廃棄物の焼却や処理等に伴い発生する CO₂
- ※) その他ガス:農業等から発生するメタン(CH₄)、自動車の走行等に伴い発生する一酸化二窒素(N₂O)、カーエアコンや冷蔵庫・エアコンの使用に伴い漏洩するフロンガス(HFC)
- ※)新潟県の「業務部門」と長岡市の「店舗・オフィス部門」は同じ内容であり、新潟県の「運輸部門」と長岡市 の「交通部門」も同様。

図 2.1.2 部門別の CO2 排出状況 (電力由来の内訳を含む)

2.2. エネルギー消費量の状況

2.2.1. 部門別エネルギー消費量の推移

本市のエネルギー消費量は、2007 年度 以降、減少傾向にあり、直近の 2019 年度 は 21,758TJ*と、基準年度 (2013 年度) 比 で 13.8%の減少となっています。

各部門別の構成割合は大きな変化がないことから、全ての部門でエネルギー消費 量の削減が進んでいることがわかります。

2.2.2. エネルギー消費構造の状況

本市は全国と比較して、都市ガスの比率が高くなっています。長岡市は南長岡ガス田等の全国有数のガス田を有しており、そこから供給された天然ガスを都市ガスとして利用しています。

一方で県と比較して石油 (LPG を含む) の比率も高くなっています。

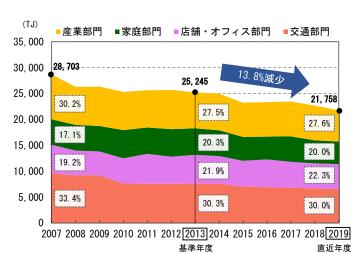
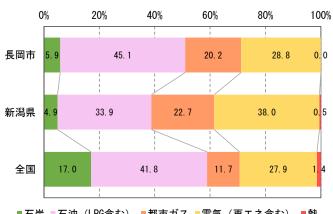



図 2.2.1 エネルギー消費量の推移

■石炭 ■石油 (LPG含む) ■都市ガス ■電気 (再エネ含む) ■熱図 2.2.2 エネルギー消費構造

〈※解説 1〉 エネルギーの単位 J(ジュール)、電力量の単位 W(ワット)、kWh(キロワットアワー)の関係

- ・1 秒間に働く電力の大きさが W (ワット) です。
- ・1Wの電力が1秒間働いたときのエネルギー量が1J(ジュール)になります。
- ・1kWh の"k (キロ)"は 1,000 の略称、"h"は 1 時間 (hour) を意味しており、1kWh のエネルギー量 (J) は、1,000×1W×3,600 秒=3,600,000 J となります。

※1 時間(h)は1分(60秒)の60倍で3,600秒

〈※解説 2〉数字の単位

記号	読み方	桁 数	乗 数
k	キロ	1,000	10^{3}
M	メガ	1,000,000	10^{6}
G	ギガ	1,000,000,000	10^{9}
Т	テラ	1,000,000,000,000	10^{12}

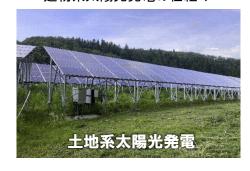
例:1TJ = 1,000,000,000,000 J

2.3. 再生可能エネルギーの導入状況

2.3.1. 再牛可能エネルギーの種類


■ 発電エネルギー

① 太陽光発電


シリコン半導体などに光が当たると電気が発生する現象を利用し、太陽の光エネルギーをソーラーパネル(半導体素子)により直接電気に変換する発電方法です。ソーラーパネルを設置する場所によって「建物系」太陽光発電と「土地系」太陽光発電に分けられています。太陽光発電のさらなる導入拡大に向けて、「PPAモデル*1」や「営農型太陽光発電*2」といったソーラーパネルの設置形式が提案され、全国的に普及拡大しています。

○長岡市における特徴と配慮すべき事項

特徴	年間発電量の実績は、全国平均比較
付取	で長岡市は約85%と遜色ない。
H0//01 >	冬期間は日照時間が少なく、パネル に雪が積もらない工夫を検討。

出典:太陽光発電協会 建物系太陽光発電の仕組み

- ※1) 電力販売契約。企業や自治体が保有する屋根や土地を電気事業者が借り、初期投資 0 円で設備を設置し、発電電気をその企業や自治体が利用することで、電気料金と CO₂排出の削減ができる仕組み。
- ※2)農地に支柱を立て上部空間に太陽光発電設備を設置し、太陽光を農業生産と発電とで共有する取組。作物の販売収入に加え、売電による継続的な収入や発電電力の自家利用等による農業経営のさらなる改善が期待できる。

② バイオマス発電、熱利用

廃棄物や残材、農業資材、畜産のふん尿といったバイオマス資源を直接燃焼して電気を作る発電方法です。ほかにもバイオマス資源を発酵させて発生したメタンガスを燃焼した際の熱を利用したり、ペレットやバイオエタノールを作って燃料化したりとさまざまな資源の活用方法があります。

○長岡市における特徴と配慮すべき事項

特徴	生ごみバイオガス発電センターのノウハウがある。
	農業廃棄物や木質廃材等の未利用 資源の活用を促す必要がある。

	木質系	農業・畜産・水産系	建築資材系
乾燥系	林地残材 製材廃材	農業残渣 家畜排泄物	建築廃材
	食品産業系		生活系
湿潤系	食品加工廃棄物 水産加工残渣	家畜排泄物 牛豚ふん尿	下水汚泥 し尿 厨芥ごみ
	製紙工場系		
その他	黒液・廃材 セルロース(古紙)	糖・でんぷん 菜種 パーム油	産業食用油

出典:資源エネルギー庁

バイオマス資源の種類

③ 水力発電

水資源に恵まれた日本では昔から盛んな 発電方法です。水を高いところから低いとこ ろに流した時の水の勢い(位置エネルギー) で水車を回して電気を作ります。

水力発電といえば大きなダムを想像しますが、近年は小水力発電(1,000kW以下)の建設が進んでいます。小水力発電は河川の流水を利用する以外にも、農業用水や上下水道を利用する方法もあります。

○長岡市における特徴と配慮すべき事項

特徴	豪雪地帯として豊富な水資源を有する。農業用水路(幹線)が計画的に整備されている。
	東部丘陵地は比較的なだらかな地形。水利権、河川法などの制約に考慮する必
き事項	要がある。

④ 風力発電

風がブレード (羽根) に当たることで生まれた回転力を使って、電気を作る発電方法です。発電所を設置する場所によって、陸上風力発電と洋上風力発電に分けられています。1日中稼働ができ、発電出力が大きいことが特徴です。

日本では風況や系統制約、地元調整等のさまざまな理由によって開発段階に時間を要するため、 世界に比べて発電コストが高くなっています。


○長岡市における特徴と配慮すべき事項

特徴	海岸部や西部丘陵などに導入可能な地域を有する。
配慮すべき事項	渡り鳥の飛来に配慮する必要がある。

■ 熱利用

① 太陽熱

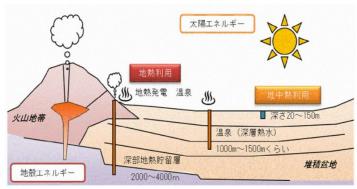
太陽の熱エネルギーを太陽集熱器に集め、 熱媒体を暖め給湯や冷暖房などに活用するシ ステムです。太陽熱温水器は、住宅、ホテル、 病院、福祉施設などで使用されています。

出典:資源エネルギー庁

太陽熱利用の仕組み

② 雪氷熱

冬の間に降った雪や、冷たい外気を使って凍らせた氷を保管し、冷熱が必要となる時期に利用するものです。

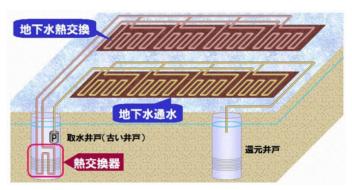

○長岡市における特徴と配慮すべき事項

特徴	豪雪地帯である長岡市にとっては有効なエネルギー。
配慮すべき事項	温暖化に伴う積雪量の低下のため、雪を安定的に確保する必要がある。

③ 地熱と地中熱

地熱は、マグマが持つ膨大なエネルギーの一部を蒸気や温泉熱という形で取り出し利用するものです。地中深くの地熱貯留層から主に 100℃前後の蒸気・熱水を発電に利用するため、調査と掘削、試験、環境アセスメント、発電設備設置と導入までに 10 年以上の長い時間がかかります。

一方、地中熱は、地下 50m~100m の地中温度を利用します。地中温度は



出典:新潟県地中熱利用研究会 地熱利用、地中熱利用の違い

一年を通し一定(15℃程度)で、夏は涼しく冬は暖かくなっています。この地中と地表の温度差を使って空調や融雪に応用する熱利用方法です。新潟県内でも、研究・開発が盛んで実用化に向けた取組が進んでいます。

○長岡市における特徴と配慮すべき事項

特徴	市内にさく井業者が集積している。
配慮すべ	地熱は、50°C程度の温泉熱の活用を促す必要がある。
き事項	地中熱は、市内企業の関係産業への参入を促す必要がある。

出典:新潟県地中熱利用研究会

2.3.2. 再生可能エネルギーの導入状況

市内における既設の再生可能エネルギーの発電出力は、合計で 18,607kW となっており、年間発電量は 91TJ になると試算されます。これを CO_2 排出削減量に換算すると約 1.3 万 t- CO_2 になります。

表 2.3.1 再生可能工名	・ルキーの導人状況	(2020 年度末現在)
----------------	-----------	--------------

及 2. 0. 1 日工 引配 二 1777 () 等八 () () 年及 小 3. 位 /								
種 別	設備件数	運行済発電出力	想定年間発電量					
作生 / Dil		kW	kWh	TJ				
太陽光発電(10kW 未満)	1,379	5,810	1	_				
太陽光発電(10kW 以上)	131	11,133	ı					
小 計	1,510	16,943	16,943,000	61				
バイオマス発電	1	560	2,550,000	9				
水力発電	1	1,100	5,735,000	21				
陸上風力	1	4.2	9,419	0.03				
総計	1,513	18,607	25,237,419	91				

- ※) 太陽光発電の年間発電量(kWh)は 1kW 当たり年間 1,000kWh で算出
- ※) バイオマス発電と水力発電は直近の実績値
- ※) 陸上風力発電の設備稼働率は25.6%で算出

出典:自治体排出量カルテ(環境省)

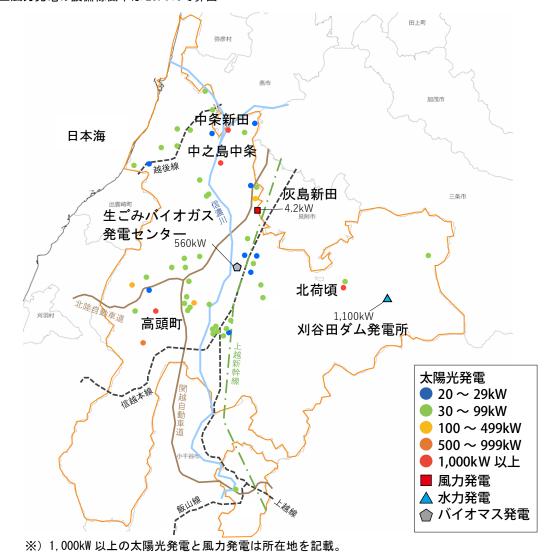


図 2.3.1 再生可能エネルギーの導入状況

2.3.3. 再生可能エネルギーの賦存量

本市の再生可能エネルギーの賦存量*の合計は、設備容量が 2,770MW、年間発電量が 3,426GWh(12,333TJ)と推計されます。これは市内における 2019 年度の電力消費量 1,739GWh(6,262TJ)の約 2 倍にあたる発電量です。また長岡市の熱利用賦存量の合計は 18,035TJ と推計されます。

実際の導入にあたっては、導入場所の制約条件や開発による影響評価、事業の採算性 を踏まえて、検討していく必要があります。

種別			導入賦存量		導入済	割合	
		MW	MWh	TJ	TJ	%	
発電	ミエネルギー アルギー						
	太陽光	2,519	2,834,914	10,206	61	0.6	
	バイオマス*		77,489	277	9	3.2	
	小水力	12	71,442	257	0	0.0	
	陸上風力	239	442,473	1,593	0.03	0.002	
	小 計	2,770	3,426,318	12,333	70	0.6	
熱和	J用						
	太陽熱			1,275	_	_	
	雪氷熱		1	70	1	_	
	地 熱		1	2,760		_	
	地中熱	_		13,930	-	_	
	小 計			18,035			
総	計			30,368			

表 2.3.2 再生可能エネルギーの賦存量 (潜在的賦存量)

※) バイオマス及び雪氷熱は長岡市で算出した値。それ以外は、環境省の提供する REPOS (Renewable Energy Potential System: 再生可能エネルギー情報提供システム) の値。

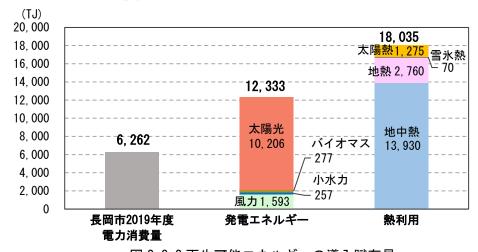


図 2.3.2 再生可能エネルギーの導入賦存量

- ※) 再生可能エネルギーの賦存量は、「潜在的賦存量」と「期待可採量」の2つの概念がある。
- ※)潜在的賦存量とは、理論的に算出しうる潜在的なエネルギーの値であり、エネルギー資源の採取及び利用に伴 う種々の制約条件は考慮していない。
- ※)期待可採量とは、エネルギー利用技術等の制約条件を考慮した上で、エネルギーとしての開発利用の可能性が期待される量。具体的な制約条件としては、機器等によるエネルギー変換効率や採取可能性、利用率等を考慮する。このため、潜在的賦存量よりも大幅に減少する場合がある。なお、環境省の調査結果によると、例えば、太陽光発電の期待可採量は潜在的賦存量の1~14%程度となっている。(我が国の再生可能エネルギー導入ポテンシャル(R4年4月))

3. 市民・事業者の省エネ・再エネ等に関する意識

3.1. アンケート調査の概要

調査期間: 2022 年 7 月 25 日~2022 年 9 月 15 日

調査対象:市民 2,500 人、事業者 500 社

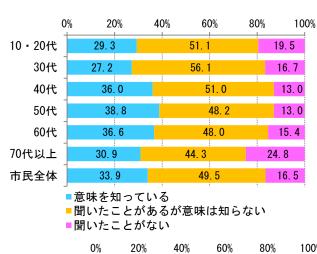
: 市民 1,437 人 (57.5%)、事業者 267 社 (53.4%) 回収率

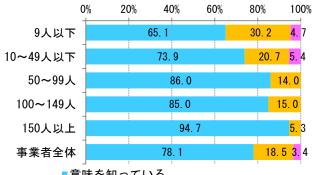
3.2. カーボンニュートラルに向けた取組の認知度

3.2.1. カーボンニュートラルの認知状況

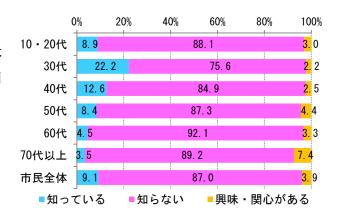
○市民の年代別集計

「カーボンニュートラルの意味を知ってい る | と回答した割合は、市民全体で33.9%。 年代別では、「聞いたことがない」と回答した 割合が、70代以上で24.8%と高く、次に10・ 20代で19.5%となっています。

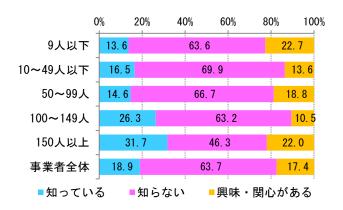



「カーボンニュートラルの意味を知ってい る」と回答とした割合は、事業者全体で78.1% と市民に比べ高くなっています。従業員数別 では、従業員数が多い事業者ほど、「意味を知 っている | と回答する割合が高くなり、150人 以上の事業者は94.7%となっています。

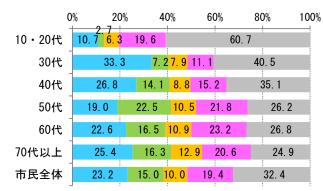
3.2.2. ZEH(ゼッチ)の認知状況


○市民の年代別集計

「知っている」と回答した割合は、市民全体 で 9.1%であり、特に、30 代は 22.2%が「知 っている」と回答しています。


- ■意味を知っている
- ■聞いたことがあるが意味は知らない
- ■聞いたことがない

3.2.3. ZEB(ゼブ)の認知状況


○事業者の従業員数別集計

「知っている」と回答した割合は、事業者全体で18.9%。従業員数が100人を超える事業者で「知っている」と回答している割合が高くなっています。

3.2.4. 住宅・事業所の省エネ対策の取組状況 ○住宅の省エネ基準の状況(年代別集計)

「省エネ基準に対応している」と回答した割合は、市民全体で23.2%であり、「機会があれば省エネ改修したい」と「新築・建替えの際に省エネ化したい」を加えると、約半分の市民が住宅の省エネ対策を実践・検討しています。特に30代は、「省エネ基準に対応している」と回答した割合が33.3%となっています。

- ■省エネ基準に対応している
- ■機会があれば省エネ改修したい
- ■新築・建替えの際に省エネ化したい
- ■省エネ基準については特に意識していない
- ■わからない

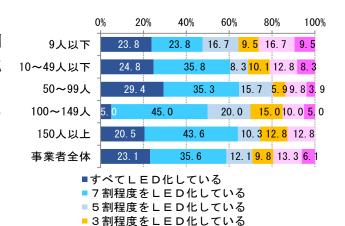
■関係のない項目である

※)「借家のため、対応できない」と回答した人を除いた割合。

○施設の総合的な省エネルギー(ESCO事業等)診断・対策の状況(従業員数別集計)

「積極的に取り組んでいる」と「ある程度取り組んでいる」を合わせると事業者全体で15.8%であり、「将来は取り組みたい」は51.7%となっています。特に従業員数が150人以上の事業者は、「積極的に取り組んでいる」と「ある程度取り組んでいる」を合わせると34.2%となり高くなっています。

3.2.5. 住宅・事業所照明の LED 化の状況


○市民の住居区分別集計

「すべて LED 化している | と回答した割合 は、市民全体で 16.9%であり、「LED 化して いない | と回答した割合は 11.6%となってい ます。居住区分別にみると、マンションの方 は照明の LED 化が進んでいます。一方、一戸 建ての方は「ごく一部のみ LED 化している」 が最も多く26.6%であり、借家・アパートの 方は「LED 化はしていない」が最も多く 31.4%となっています。

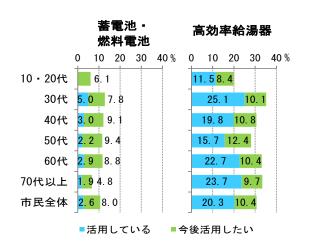
○事業者の従業員数別集計

「すべて LED 化している」と回答した割 合は、事業者全体で 23.1%であり、「LED 化 していない」と回答した割合は6.1%となって います。住宅よりも事業所の方が、照明の LED 化が進んでいます。

■ごく一部のみをLED化している

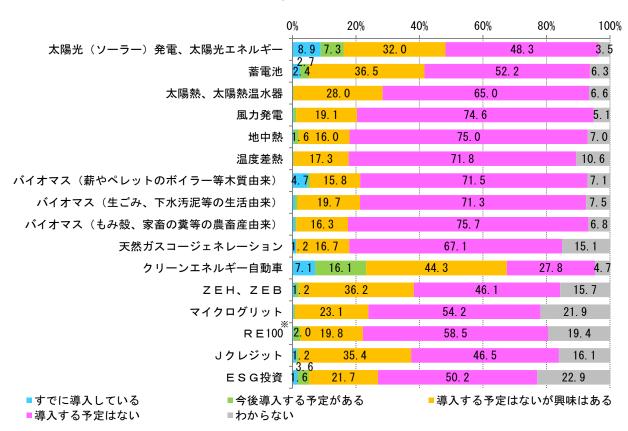
LED化はしていない

3.3. 住宅・事業所の再工ネ設備等の導入意向


3.3.1. 住宅の再工ネ設備等の導入意向

○太陽光パネルの設置状況

・太陽光パネルの設置状況を尋ねたところ、 「太陽光パネルを設置済」とする割合が 2.3%、「設置を検討したい」が 18.5%、「設 置することは難しい」が79.2%となってい ます。

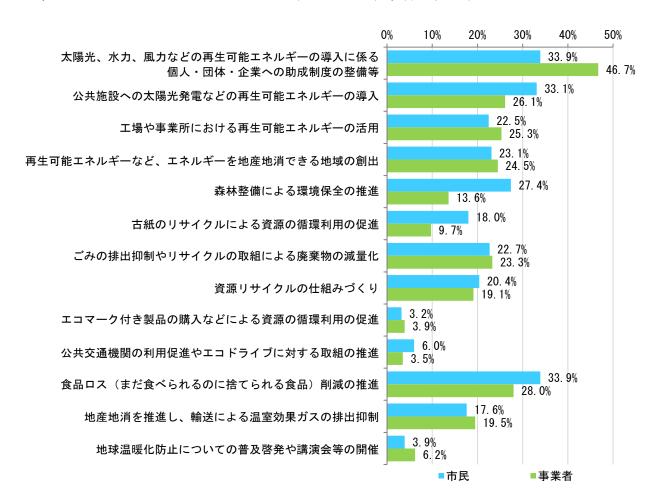


- ・蓄電池、燃料電池(いわゆるエネファームなど)は、市民全体で「活用している」と回答した割合が2.6%で、「今後活用したい」と回答した割合が8.0%となっています。
- ・高効率給湯器(いわゆるエコキュートなど) は、市民全体で「活用している」と回答し た割合が20.3%で、「今後活用したい」と回 答した割合が10.4%となっています。

3.3.2. 事業者の再エネ導入や環境経営に関する意向

太陽光発電の導入が一番進んでいる取組となっています。「導入する予定はないが興味はある」と回答した割合が高かった取組は、クリーンエネルギー自動車で44.3%、蓄電池で36.5%、ZEH・ZEBで36.2%、Jクレジットで35.4%となっています。

※)RE100:企業が自らの事業の使用電力を100%再エネで賄うこと。


3.4. 今後 5 年間で重点的に進めるべき取組の意向

○市民の全体集計

最も割合が高かった項目は、「太陽光、水力、風力などの再生可能エネルギーの導入に係る個人・団体・企業への助成制度の整備等」と「食品ロス(まだ食べられるのに捨てられる食品)削減の推進」で33.9%。次に「公共施設への太陽光発電などの再生可能エネルギーの導入」で33.1%となっています。再生可能エネルギーの導入に対して重点的に進めるべきと考えている市民が多い状況です。

○事業者の全体集計

最も割合が高かった項目は、「太陽光、水力、風力などの再生可能エネルギーの導入に係る個人・団体・企業への助成制度の整備等」で46.7%となっています。次に「食品ロス(まだ食べられるのに捨てられる食品)削減の推進」で28.0%、「公共施設への太陽光発電などの再生可能エネルギーの導入」で26.1%と、市民と同様に再生可能エネルギーの導入に対して重点的に進めるべきと考えている事業者が多い状況です。

4. 脱炭素社会の実現に向けた基本方針

4.1. 脱炭素化に向けた視点

■脱炭素化で市民生活をさらに豊かにする

近年の技術開発の進展、地球温暖化や SDGs など持続可能な社会への意識が高まり、 快適な暮らしを維持しながら CO₂の排出削減に取り組む考えが浸透してきました。

CO₂を排出しない暮らしを目指すためには、市民・事業者・行政それぞれの主体が新たなライフスタイルに適応することが必要です。そのための取組が、地域経済に活力を与え、未来の当たり前の日常につながり、市民生活をさらに豊かにしていきます。

■市民・事業者・行政の協働の下、行動変容を促す

2050年カーボンニュートラルの実現には、市民・事業者に対して国や県の政策などの情報が正確に提供され、消費・選択の行動を変容させることが不可欠です。

先ずは、省エネ対策の推進と積極的な再生可能エネルギーの導入。さらに、地域特性や高度なものづくり技術を生かした、次世代技術の開発を行うことで、省エネ、再エネを推進する必要があります。そのためには、次世代を担う子どもたちをはじめ、さまざまな世代の人づくりが必要となります。これは、人材育成を通じて脱炭素化に向けたイノベーションを起こすことでもあり、長岡が誇る未来のために投資する米百俵の精神に基づいた取組でもあります。

■エネルギーの地消地産で、地域の防災力や事業継続力を高める

本市は、2021 (令和 3) 年 6 月に、バイオテクノロジーや再生可能な生物資源を利活用し、循環型の経済社会の実現を目指す国の「地域バイオコミュニティ」に認定されました。現在、地域の未利用資源を活用したバイオ関連産業の創出と、持続可能な循環型コミュニティの形成を進めています。

また、国内生産量の約4割を占める長岡産の天然ガスは CO₂の排出量が比較的少ない身近なエネルギーであり、カーボンニュートラルガスの導入も始まっています。市民協働の取組により、生ごみの分別収集が 2013 (平成 25) 年から継続され、生ごみバイオガス発電センターでは、これを資源とした発電事業が行われています。このような形で、地域資源を循環促進させ、エネルギーの地消地産を推進していきます。

これらの取組は、自然災害等によるエネルギー供給が困難になった場合の地域防災力の向上や、事業継続力を高めることにつながります。

4.2. 脱炭素化に向けた基本方針

本戦略を進めるにあたり、未来への投資を大切にしている「米百俵の精神」で、市民生活を豊かにしていく視点に立って取組を進めます。

カーボンニュートラル実現に向けては、市民・事業者・行政の協働の下、着実に消費・選択の行動変容を起こしていくこと。エネルギーの地消地産に関する課題を先進技術で解決するGX (グリーントランスフォーメーション) やイノベーションを起こす社会実証を積み重ねていくこと。そして、防災や事業活動の継続などあらゆる危機に強い地域や産業へと変容することを目指し、次の3つの基本方針に沿って取組を進め、環境と経済の好循環につなげていきます。

脱炭素化の実現に向けた視点

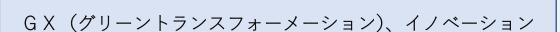
- ■脱炭素化で市民生活をさらに豊かにする
- ■市民・事業者・行政の協働の下、行動変容を促す
- ■エネルギーの地消地産で、地域の防災力や事業継続力を高める

基本方針1 徹底した省エネ対策の推進

CO₂ 排出量のさらなる削減を進めるには、市民や事業者の省エネへの理解・関心を高めて、市民・事業者・行政の消費・選択の行動変容が不可欠です。産業、家庭など、部門ごとに高効率機器への切り替えや、高気密・高断熱などの建物のゼロエネルギー化、次世代自動車の普及や公共交通の利用など、幅広い分野における徹底した省エネ対策を進めます。

基本方針2 再生可能エネルギーの日常的な利用

まずは 2030 年度に向けて、即戦力と評価されている太陽光発電を中心に導入を推進します。市民生活や事業者の経済活動において太陽光発電や蓄電設備の利用を日常化していくことで、災害時の地域防災力や事業継続機能を高めていきます。これと並行して、長岡市域をフィールドにした小水力や風力発電、地中熱など社会実装に向けた試験導入を進め、さらなる環境産業の創出・育成を図ります。


基本方針3 地域資源の循環促進

長岡産の天然ガスを有効活用することは、他の化石燃料より CO_2 の排出量が少なく、さまざまなコスト削減にもつながります。また、本市の強みである 4 大学 1 高専の技術や知見を活かし、長岡バイオコミュニティを産学連携で進め、多様なバイオマス活用システムの構築に取り組みます。特に豊かな森林資源の活用や若返りを図り、 CO_2 吸収源の環境整備を促進します。

これらの取組により、CO2を排出しない資源循環のまちを目指します。

長岡市の脱炭素社会の実現

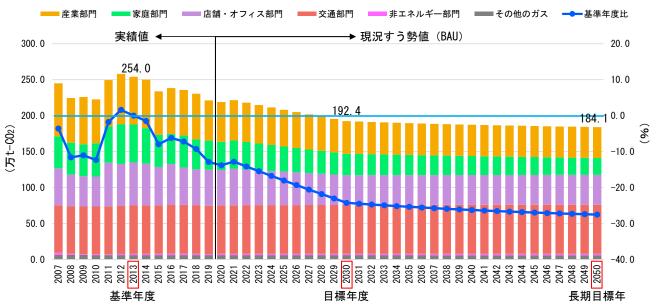
米百俵の精神で脱炭素にチャレンジ!

基本方針 1 徹底した省エネ対策の推進

環境と経済の 好循環

基本方針 2 再生可能エネルギー の日常的な利用 基本方針3 地域資源の 循環促進

消費・選択の行動変容、ライフスタイルの転換、危機に強い地域や産業


5. カーボンニュートラルに向けた目標

2030 年度に温室効果ガスを基準年度(2013 年度)比で 46%削減するため、現状での将来予測と基本方針である徹底した省エネ対策、再生可能エネルギー導入、地域資源循環に、CO2吸収源対策を加えて、それぞれの削減量の目標値を示しました。

5.1. 現在の取組を継続することによる温室効果ガスの排出量

本市の温室効果ガス排出量の現況すう勢値 (以下 BAU と表記) を推計するにあたり、エネルギー起源の CO_2 排出量は、2007 年度から 2019 年度の各部門のエネルギー消費量の実績値に基づいて算出します。非エネルギー起源 CO_2 とその他のガスは、現況のトレンド値を基に算出します。さらに、太陽光パネルやガスコージェネレーションなど、これまでに導入が進んだ再生可能エネルギーや省エネの取組などによる温室効果ガスの削減傾向が今後も続くことを前提に、BAU を推計しました。

その結果、目標年度である 2030 年度の温室効果ガス排出量は、192.4万t-CO $_2$ と推計され、基準年度(2013年度)比で 24.3%の削減となります。

- ※)エネルギー起源の CO_2 排出量は、2007 年度から 2019 年度までのエネルギー消費量の実績値をもとに、2020 年以降のエネルギー消費量を推計し、エネルギー毎(電気、都市ガス、灯油、軽油、石炭製品、石油製品など)に設定されている CO_2 排出係数を掛け合わせて現況すう勢値を算出。
- ※)電気の CO2 排出係数は各年度東北電力が公表している値を用いて算出。CO2 排出係数は、国が CO3 作度長期エネルギー需給見通しの中で示している CO3 CO3

図 5.1.1 部門別温室効果ガス排出量の実績値と現況すう勢値(BAU)

5.2. 2030 年度における温室効果ガス削減目標

Ⅰ:徹底した省エネ対策による温室効果ガスの削減量

国が2021 (令和3) 年9月に示した建物の省エネ化、高効率機器の導入、次世代自動車の普及等の徹底的な省エネ対策を本市でも実施した場合の温室効果ガス削減量を推計しました。(表5.2.2)。

その結果、2030 年度の温室効果ガス削減量は 31.1 万 t- CO_2 (基準年度比で 12.2%)、BAU と合わせて 92.7 万 t- CO_2 (基準年度比で 36.5%) の削減となります。

		目標年度 (2030年度)						
	基準年度	現況趨勢値(BAU)			徹底した省エネ対策実施後			
部門	(2013年度) C02排出量 (万t-C0 ₂)	C02排出量 (万t-C02)	基準年度 からの 削減量 (万t-CO ₂)	基準年度比 削減率 (%)	C02排出量 (万t-C02)	省エネ対策 による基準 年度からの 削減量※ (万t-CO2)	基準年度 からの合計 削減量 (万t-CO ₂)	基準年度比 削減率 (%)
産業部門	66. 3	45. 3	21.0	▲ 31.6	41.9	3. 4	24. 3	▲ 36.7
家庭部門	52. 7	29. 9	22. 8	▲ 43.3	22. 1	7. 8	30. 7	▲ 58.2
店舗・オフィス部門	59. 9	41. 4	18. 5	▲ 30.9	32. 9	8. 5	27. 0	▲ 45.1
交通部門	67. 3	67. 9	-0.6	0.9	56.6	11. 3	10.7	▲ 16.0
非エネルギー部門	1. 6	1. 8	-0.3	16.5	1.8	ı	_	16.5
その他のガス	6. 1	6.0	0. 1	▲ 2.4	6. 0	_	_	▲ 2.4
合 計	254. 0	192. 4	61.6	▲ 24.3	161. 3	31. 1	92.7	▲ 36.5

表 5.2.1 徹底した省エネ対策による部門別温室効果ガス排出量

- 注)小数点以下の関係で合計値が合わない場合がある。
- ※)表 5.2.2 の徹底した省エネ対策を実施した場合の CO₂排出量の削減量を示す。

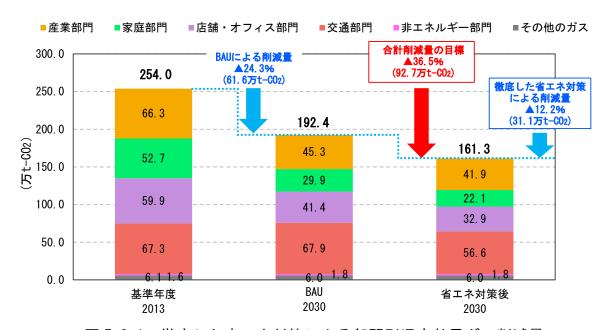


図 5.2.1 徹底した省エネ対策による部門別温室効果ガス削減量

表 5.2.2 長岡市の徹底した省エネ対策実施後の部門別 002 削減量

部 門	省エネルギー対策名	対策概要	CO2削減量 (万t-CO ₂)
	高効率空調の導入	工場内の空調に関して、燃料式、ヒートポンプ式の空 調機の高効率化を図る。 食料品製造業等の加熱・乾燥プロセスにおける熱供給	
	産業ヒートポンプの導入	に高効率ヒートポンプを使用する。	
	産業用照明の導入	LED・有機EL等の高効率照明を導入する。	
	低炭素工業炉の導入	従来型と比較して熱効率が向上した工業炉を導入する。	
	産業用モータの導入	トップランナー制度を通じた高効率モータの開発やインバータ導入によりファン・ポンプ等の省エネを図る。	
	従来型省エネ技術の導入	高効率粉砕設備、排熱発電等の最大導入に努める。	
産業	熱エネ代替廃棄物利用技術の導入	熱エネルギーの代替として廃棄物を利用する技術を導入する。	
部	セメント製造プロセス低温焼成関連技	エネルギー消費量が最も多いクリンカの焼成工程を低 温で可能とする革新的技術の導入を図る。	3. 4
門	術の導入 ガラス溶融プロセス技術	プラズマ等の高温を利用し原料を瞬時に溶融・ガラス	
	施設園芸における省エネ設備の導入	化する技術を導入し省エネを図る。 省エネ型の加温設備を導入する。	
	加設図云にのける有工不設備の導入 省エネ農機の導入	省エネ農業機械(自動操舵装置)の普及を図る。	
	省エネ漁船への転換	省エネ技術を漁船に導入する。	
	FEMSを利用したエネ管理	Iotを活用したFEMS等の運用改善を図る。	
	業種間連携省エネの取組推進	業種間連携のなかでエネルギー利用効率を高度化す	
	食品ロス削減によるエネルギー使用量	る。	
	良品ロス削減によるエイルキー使用量 削減	食品ロス削減を通じて、食品製造工程における無駄な エネルギー消費を削減する。	
	住宅の省エネ化	ZEHの推進、新築の省エネ基準の適合義務化、基準の段階的な引き上げ等を図る。また既存建築物への省エネ改修を図る。	
家	高効率給湯器の導入	ヒートポンプ式や潜熱回収型の給湯器を導入する。	
庭	高効率照明の導入	LED・有機EL等の高効率照明を導入する。	
部門	トップランナー制度等による機器の省 エネ性能向上	トップランナー制度を通じて電化製品の省エネ性能の 向上を図る。	7. 8
١,	HEMS等による徹底的なエネ管理の実施	HEMS、スマートメーター等の導入により省エネ行動を 促進させる。	
	市民運動の推進	クール・ウォームビズの徹底や家庭エコ診断の普及に より省エネの行動変革を図る。	
	建築物の省エネ化	ZEBの推進、新築の省エネ基準の適合義務化、基準の段階的な引き上げ等を図る。また既存建築物への省エネ	
店	建業物の有工不化	階的な引き上げ寺を図る。また既仔建業物への有エネー 改修を図る。	
舗	業務用給湯器の導入	ヒートポンプ式や潜熱回収型の給湯器を導入する。	
·	高効率照明の導入	LED・有機EL等の高効率照明を導入する。	
オフ	冷媒管理技術の導入	フロンを適正管理する体制(設備・人材)の整備を図 る。	8. 5
1	トップランナー制度等による機器の省	トップランナー制度を通じて電化製品の省エネ性能の向上を図る。	
ス	<u>エネ性能向上</u> BEMSの活用、省エネ診断等を通じた徹	INILで図る。 BEMS、スマートメーター等の導入により省エネ行動を	
部門	底的なエネ管理の実施	促進させる。	
[]	市民運動の推進	クール・ウォームビズの徹底により省エネの行動変革 を図る。	
	燃費改善、次世代自動車の普及	エネルギー効率に優れた車両(HEV, EV, PHEV, FCV, CDV) の導入を支援し、普及拡大を促進する。	
交通部門	その他交通部門対策	の時代を又振し、音水拡大を促進する。 交通流対策の推進,公共交通機関の利用促進,鉄道貨物 輸送へのモーダルシフト,海運グリーン化,トラック輸 送の効率化,鉄道・航空の高効率化,共同輸配送の推進, 信号の集中制御化,自動運転・エコドライブの推進, カーシェアリング,宅配再配達の削減,ドローン物流,物 流施設の低炭素化の推進	11.3
	<u></u>		31.1

- ※1) FEMS (フェムス): 工場向けのエネルギー管理システム (EMS)
- ※2) HEMS (ヘムス): 住宅向けのエネルギー管理システム (EMS)
- ※3) BEMS (ベムス): 商用ビル向けのエネルギー管理システム (EMS)
- ※4)トップランナー制度:エネルギーを多く使用する機器等ごとに、省エネルギー性能の向上を促すための 目標基準を満たすことをその製造事業者・輸入事業者に対して求める制度

Ⅱ:再生可能エネルギー導入による温室効果ガスの削減量

太陽光発電は、県の 2030 年度導入目標に対し本市の世帯数で換算し目標値としています。さらに、バイオマス発電施設等の現在計画されている、あるいは導入が見込まれる施設の発電出力を加え、全体で 131,000kW (温室効果ガス排出量削減効果 7.1 万 t-CO₂) の確保を目標とします。

その結果、2030年度の温室効果ガス排出量は、BAUと徹底した省エネ、再生可能エネルギー導入で、基準年度比39.3%の削減となります。

表 5.2.3 再生可能エネルギーの導入状況と 2030 年度における導入目標

	運行済(20	20 年度末)		導入目標	(2030 年度)		
種別	件数	kW	件数	kW	kWh	CO2 削減量 t-CO2	備考
太陽光発電※1	1, 510	16, 943	約 11,000	約 95,000	95, 000, 000	35, 150	
一般住宅向け (10kW 未満)	1, 379	5, 811	約 9, 700	約 43, 000	43, 000, 000	15, 910	1kw 当たり年間1,000kWhで 算出
事業者向け (10kW 以上)	131	11, 133	約 1, 300	約 52, 000	52, 000, 000	19, 240	
バイオマス発電**2	1	560	2	2, 490	14, 461, 071	5, 417	既設発電所の増強分と新た な発電所の計画値分を追加
水力発電	1	1, 100	1	1, 100	5, 735, 000	2, 122	発電所の実績値
小水力発電※2	0	0	5	900	4, 730, 400	1, 750	施設稼働率を 60%で算出
陸上風力発電※2	1	4. 2	2	31, 504	70, 650, 059	26, 141	設備利用率を 25.6%で算出
合計	_	18, 607		130, 994	190, 756, 530	70, 580	

※1) 太陽光発電が導入目標を達成するための発電出力規模

10kW未満: 既設の太陽光発電設備の導入量と、市民アンケート調査で"今後、太陽光パネルを活用したい"と回答した割合 8.3%の住宅で出力規模 4.5kWの太陽光発電設備を新設した場合の導入量との合計値。市内の居住有り住宅99,010 戸(H30 住宅・土地統計調査結果)のうち約8,300 戸分の導入件数に当たる。

10kW以上: 既設の太陽光発電設備の導入量と、事業者アンケート調査で"今後、導入する予定がある"と回答した 割合 7.3%の事業所で出力規模 40kWの太陽光発電設備を新設した場合の導入量との合計値。市内の 13,607事業所(H28 経済センサス)のうち約1,000事業所分の導入件数に当たる。

※2) バイオマス発電等の導入目標件数は、予定されている計画値で記載。

導入目標	131,000kW
CO2削減量	7.1万 t-CO₂

図 5.2.2 再生可能エネルギー導入による温室効果ガス削減量

■ 再生可能エネルギーの導入内訳

① 太陽光発電の導入目標

市内における FIT 認定された太陽光発電は、16,943kW となっています(表 5.2.3)。 県は「新潟県 2050 年カーボンゼロの実現に向けた戦略(2022 年 3 月)」において、2030 年度までに太陽光発電の追加の導入見込み量として県全体で650MW を想定しています。 この値に県内に占める本市の世帯割合を掛け合わせると77,891kW となります。よって、 2030 年度の太陽光発電の導入目標を約95,000 kW とします。

② バイオマス発電の導入目標

2013 (平成 25) 年から市が運営する生ごみバイオガス発電センターでは、560 kW のガス発電機があります。2023 (令和 5) 年より長岡中央浄化センターで発生した下水消化ガスを長岡市生ごみバイオガス発電センターに送り 580kW に増強します。また、2024 (令和 6) 年度に運転開始する長岡市中之島新ごみ処理施設においては、1,910kW の蒸気タービン発電機を整備する予定となっています。

この他、木質バイオマスや農業系バイオマスによる発電・熱利用は、導入までに実証 実験などの時間を要することから、2030 年度のバイオマス発電の導入目標を 2,490 kW とします。

③ 水力発電の導入目標

市内の水力発電(1,000 kW を超えるもの)は、最大出力 1,100 kW の刈谷田ダムの発電所だけです。1,000 kW 以下の小水力発電は、現在市内で導入が進んでいないものの、200 kW 未満の小水力発電のポテンシャルを持つ河川は市南東部にいくつか存在し、民間等が検討段階にあることから、2030 年度の水力発電の導入目標を約 900 kW とします。

④ 陸上風力発電の導入目標

市内で FIT 認定された陸上風力発電は 4.2kW であり、その他に運行開始前(FIT 認定済み)のもので 31,500kW の陸上風力発電が計画されています。陸上風力発電は近年大規模化が進み行政による参入は難しく、民間活力に頼らざるを得ない状況であることから、計画状況を踏まえ、陸上風力発電の導入目標を約 31,504 kW とします。

⑤ 熱エネルギーの利用

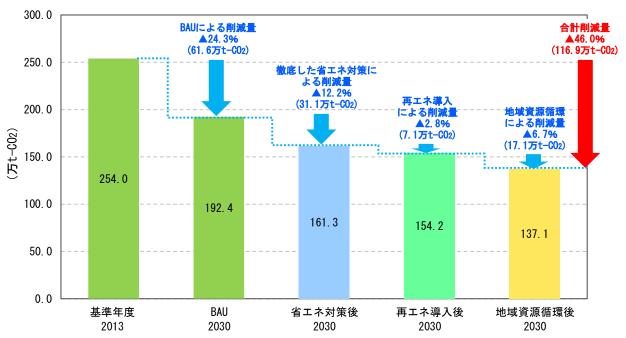
市内における地中熱エネルギーの導入は限定的となっています。また、雪氷熱、下水処理水の温度差エネルギーなど、熱エネルギーの利用促進については、実証実験などの時間を要することから、2030年度の目標値は定めないこととします。

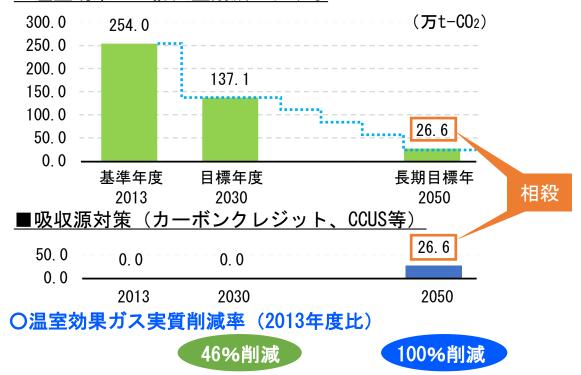
Ⅲ:地域資源循環による温室効果ガスの削減量

2030 年度に温室効果ガス排出量 46%削減を達成するため、地域資源の循環による取組で、温室効果ガスを 6.7%削減することを目標とします。

そのため、多様なバイオマス活用システムの構築や CO₂ 吸収源となる森林の整備による若返りとこれに伴う伐採木の活用、事業所で使われる燃料の重油から天然ガスへの切り替えをはじめ、事業系の生ごみを活用したバイオガス施設の利用拡大、食品ロスや使用済み製品のリユース、プラスチック製品の資源循環などを積極的に展開します。

I ~Ⅲの各取組により、2030 年度の温室効果ガス排出量を基準年度(2013 年度)比で 46%削減することを目指します。




図 5. 2. 3 2030 年度の温室効果ガス排出量削減シナリオ

5.3. 2050 年における温室効果ガス削減目標

温室効果ガス排出量は、県の脱炭素シナリオに沿ってさまざまな排出抑制を進めていくと、2050年には 26.6 万 t- CO_2 となります。2050年カーボンニュートラルを実現するためには、この 26.6 万 t- CO_2 を、地域資源を活用したカーボンクレジットや CO_2 を化学製品の製造に有効活用したり、地下の安定した地層に貯留する CCUS*等の技術導入により相殺していく必要があります。それに向けたさらなる吸収源対策を進めていくことが重要になります。

※)CCUS: Carbon dioxide Capture, Utilization and Storage の略称。火力発電所や工場などからの排気ガスに含まれている CO_2 を【分離・回収】し、資源として化学製品の製造に有効利用する技術。また、地下の安定した地層の中に貯留する技術。

■温室効果ガス排出量削減シナリオ

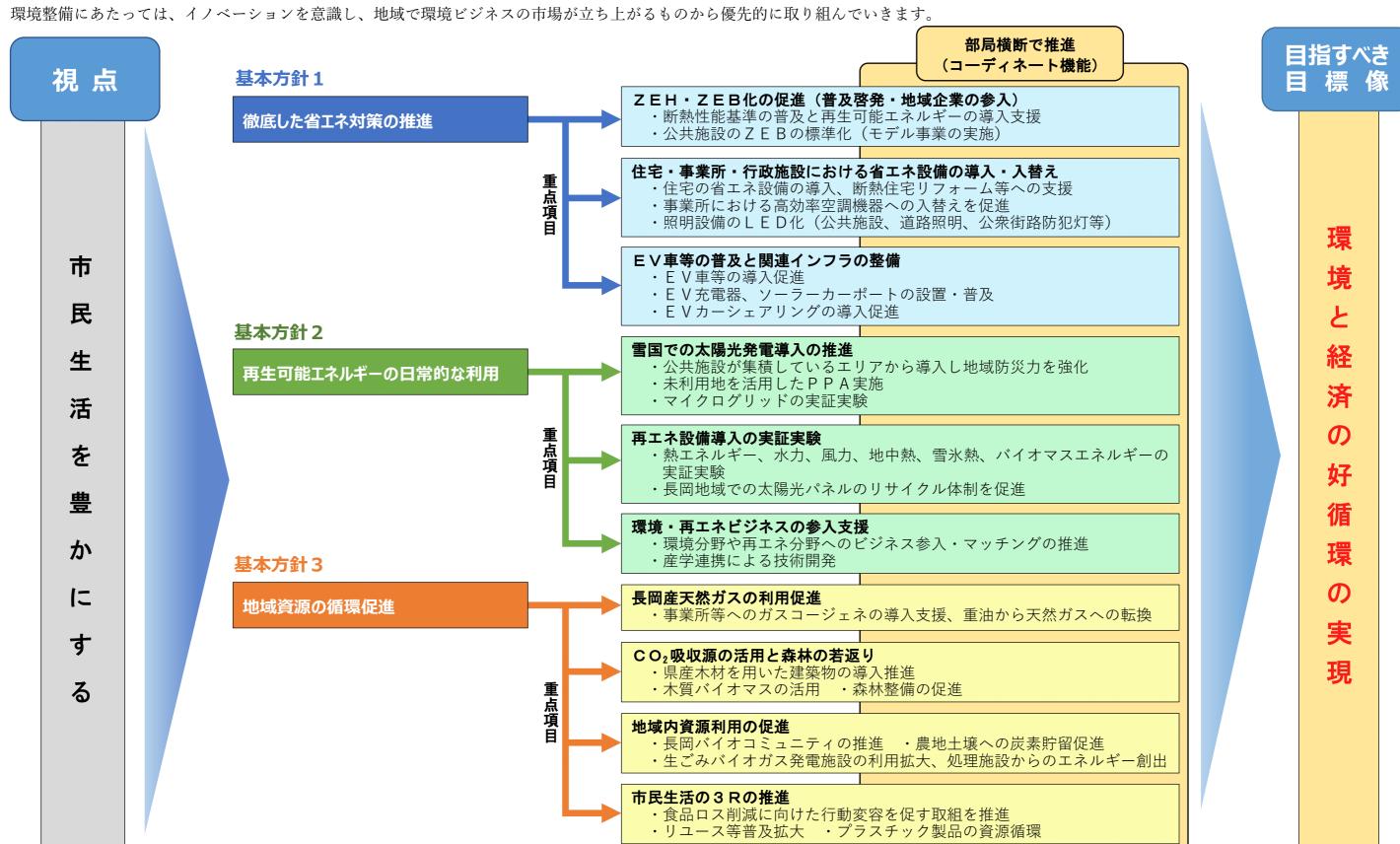

※) 2050 年(長期目標年)の CO_2 排出量は、県の「新潟県 2050 年カーボンゼロの実現に向けた戦略」の中で推計している 2013 年度から 2050 年の CO_2 排出量の削減割合を長岡市の 2013 年度(基準年度)の値に掛け合わせて算出。

図 5.3.1 2050 年の温室効果ガス排出量削減シナリオ

6. 目標達成に向けた取組

6.1. 脱炭素化の実現に向けた重点項目

市はカーボンニュートラルに向けた先導役を務めるとともに、次の3つの基本方針毎に重点項目を定め19のプロジェクトを設定し、市民・事業者が活動しやすい環境整備を進めていきます。

6.2. 脱炭素化に向けた各プロジェクト

目標達成に向けた各プロジェクトを、対象部門ごとに整理をすると以下の表中のとおりになります。

また、各方針の取組の内容は別表のとおりです。

基本方針	対象部門		プロジェクト
徹底した	家庭部門	1	市民生活での省エネ導入
省エネ対策の		2	自家用車の EV 化
推進	産業部門、店舗・オフィス部門	3	事業所での省エネ導入
		4	事業所での EV 化
	交通部門	5	公共交通利用促進
	行政部門	6	公共施設での省エネ推進
		7	公用車の EV 化
再生可能	家庭部門	8	市民生活での再エネ導入
エネルギーの	産業部門、店舗・オフィス部門	9	事業所における脱炭素化の推進
日常的な利用		10	ゼロエミッションエリア構築
		11	農業の脱炭素化推進
	行政部門	12	公共施設·公有地活用
	研究·開発部門	13	再エネ普及に向けた実証実験
		14	環境・再エネビジネスの参入
地域資源の	家庭部門	15	市民生活の3R の定着
循環促進	産業部門、店舗・オフィス部門	16	長岡産天然ガスの地産地消
		17	CO₂吸収源の活用と森林の若返り
		18	地域内資源の活用促進
	行政部門	19	処理施設での資源循環

【凡例】

基本方針1 徹底した省エネ対策の推進

対象部門	プロジェクト		取組	内容	頁
		1-1	住宅の ZEH 化	・断熱性を高めた新潟県版雪国型 ZEH について、普及と啓発を図る	32
		1-2	住宅リフォーム支援	・住宅の外壁、屋根、天井、床または窓の断熱改修等を支援	34
家庭部門	1 市民生活での省エネ導入	1-3	住宅の省工ネ設備導入	・高効率給湯器(エネファーム、エコキュート等)、高断熱浴槽、節水型トイレ、節湯水栓、太陽熱利用システム等の熱エネルギー設備や省エネ設備等の設置を支援	35
		1-4	公衆街路防犯灯の LED 化	・町内会等団体が所有する防犯灯について、LED への取替えを支援	36
	2 自家用車の EV 化	2-1	EV 車等の導入促進	・EV、PHV、PHEV、FCVの購入を促進 ・個人住宅の充放電設備、集合住宅へ充電・充放電設備設置に国の補助事業活用を促進	37
	2 日家用単の EV 16	2-2	EV カーシェアリングの導入	・市営住宅、学生寮、コミュニティセンター等で EV カーシェアリング導入の調査研究	38
	3 事業所での省エネ導入	3-1	事業所等の ZEB 化	・事業所、店舗等の ZEB 化を促進	39
産業部門、店舗・オフィス部門		3-2	高効率機器の導入	・事業所、店舗等での高効率照明機器、高効率空調設備の導入を支援	40
	4 事業所での EV 化	4-1	事業者の EV 車等導入促進	・EV、PHV、PHEV、FCVの購入を促進 ・事業所、商業施設への充電・充放電設備設置に国の補助事業の活用を促進	41
☆ ⟨ 又 如阳	5 公共交通利用促進	5-1	公共交通の利用促進	・市民や事業所等に対して、積極的な公共交通の利用を促進 (ゼロカーボン・ドライブに向けての取組を実施)	43
交通部門		5-2	公共交通への EV 車等導入促進	・バスやタクシー、福祉車両等のエコカー導入を促進 ・地域公共交通に対するエコカー車両の導入を促進	44
	6 公共施設での省エネ推進	6-1	公共施設の ZEB 化	・今後新築する公共施設は、原則としてZEB Oriented相当以上とする ・米百俵プレイス西館・東館において先行してZEB化を実施(クール・ヒートトレンチシステムを導入して再エネも推進)	45
		6-2	公共施設における照明の LED 化	・主な施設の 2030 年度設置完了に向け、LED 化を推進	46
		6-3	道路施設等における照明の LED 化	・2030 年度設置完了に向け、道路照明やトンネル照明等について、新設時・更新時の LED 化を推進	46
行政部門		6-4	高効率空調機器への入替	・公共施設の空調機について、高効率機器への入替えを推進	46
	7- 7 公用車の EV 化 7-	7-1	公用車における EV 車等導入	・稼働頻度や使用距離に応じて導入可能な公用車 EV 化の推進 ・公用車入替え計画を策定し、計画的な入替えを行うとともに、公用車台数を削減	47
		7-2	EV カーシェアリングの実証実験	・来街者をはじめ、まちなか居住者を対象にカーシェアリングの調査研究	48
		7-3	EV 充電器の設置	・公共駐車場、観光交流施設等への EV 充電器の設置を推進	49
		7-4	ソーラーカーポート設置実証実験	・公共施設敷地内にソーラーカーポートを設置し、普及を促進	50

基本方針 2 再生可能エネルギーの日常的な利用

対象部門	プロジェクト		取組	内容	頁
家庭部門	8 市民生活での再工ネ導入	8-1	太陽光発電設備の導入	・新築、既存住宅への太陽光発電設備及び蓄電池の設置を促進	51
	9 事業所における脱炭素化の推進	9-1	再エネ設備の導入	・事業所の太陽光発電設備及び蓄電池等の設置を促進	53
産業部門、店舗・オフィス部門	舗・オフィス部門 10 ゼロエミッションエリア構築 10-1 マイクログリッドの実証実験	・工業団地等のエリア内において、再生可能エネルギーや未利用熱等を最大限活用したマイクログリッド(自立分散型システム)の実証実験を通じてゼロエミッションエリアの拡大につなげる	55		
	11 農業の脱炭素化推進	11-1	再エネ・省エネ型農業設備の導入	・スマート技術の導入、再エネ・省エネ化など、低炭素化や脱炭素化につながる機械・施設の導入を奨励・支援	56
	12 公共施設・公有地活用	12-1	雪国対応の太陽光発電設備導入	・行政庁舎、学校、コミュニティセンターなどの公共施設や未利用地に、自家発電用の太陽光発電設備を設置 ・未利用地での民間活力による PPA の導入の検討	57
行政部門		12-2	次世代まちづくり推進	・ウォーカブルなまちの形成に向けて、立地適正化計画に基づき都市機能及び居住を誘導 ・EV・FCVを用いたバスやタクシーの導入やMaaSの実装等による公共交通の利用を促進	58
	13 再工ネ普及に向けた実証実験	13-1	再エネ設備導入の実証実験	・公共施設、農地、未利用地での熱エネルギー、小水力、風力、バイオマス等の再生可能エネルギーの実証実験	59
研究·開発部門		GX(グリーントランスフォーメーション) 分野のイノベーション研究	・水素、メタネーション、燃料電池等の成長分野への企業支援 ・長岡地域での太陽光パネルのリサイクル体制を促進	60	
	14 環境・再エネビジネスの参入	14-1	技術開発とビジネス参入支援	・再エネ技術を活かした産業振興やビジネス参入・マッチングを推進	61

基本方針3 地域資源の循環促進

対象部門	プロジェクト		取組	内容	頁
		15-1	食品口ス削減	・生活の中で食品ロスの現状や対策などについて理解を深め、行動変容を促す取組 を推進	62
家庭部門	15 市民生活の3R の定着	15-2	リユース等普及拡大	・リサイクル店舗、フリマアプリとのマッチング等を通じて、リユースに向けた行動変 容を促す取組を推進	63
		15-3	プラスチック資源循環	・再資源化できるプラスチック製品の購入と分別処理を推進	64
	16 長岡産天然ガスの地産地消	16-1	天然ガスの利用促進	・工場等で利用されている重油から天然ガスへの転換を促進 ・ガスコージェネレーションなど高効率なシステム導入を支援	65
	17 CO2 吸収源の活用と森林の若返り	17-1	県産木材利用促進	・戸建住宅や集合住宅、事務所などの木造建築物において、官民を問わず、県産木 材の利用を促進 ・木質バイオマスの活用 ・県産木材の供給体制の整備	66
		17-2	森林整備の促進	・計画的な森林整備(利用間伐、主伐・再造林等)を促進・「伐って、使って、植える」森林の循環利用サイクルの確立	68
産業部門、店舗・オフィス部門		18-1	長岡バイオコミュニティの推進	・未利用バイオマス資源の肥料化や生産時に生じる副産物の活用など、地域資源を活用したバイオ関連産業の創出	69
		18-2	農地土壌への炭素貯留促進	・有機質資材を用いた土づくりや炭化物による土壌改良剤の施用など、土壌への炭 素貯留につながる取組を支援	70
	18 地域内資源の活用促進	18-3	BDF の製造推進	・家庭や事業所からの廃食油(植物系)を積極的に収集。BDF に精製し、代替ディーゼル燃料としての活用を促進	71
		18-4	カーボンクレジットの利用促進	・バイオマス、森林資源、海洋資源、カーボンニュートラルのガスや電気を活用した J-クレジット制度の調査研究	72
		19-1	生ごみ発電施設の利用拡大	・事業系生ごみの受入れを促進 ・下水消化ガスの活用によるバイオガス発電を推進	73
行政部門		19-2	ごみ焼却熱のエネルギー活用	・中之島新ごみ処理施設へ高効率ごみ発電設備を導入	74
		19-3	高濃度メタン発酵による下水道消化ガスの活用	・小規模下水処理施設から発生する汚泥を高濃度メタン発酵処理し、バイオガス発電事業を実施	75

6.3. 徹底した省エネ対策の推進

対象部門 : 家庭部門

プロジェクト1 市民生活での省エネ導入

■ プロジェクト概要

1-1 住宅の ZEH 化

① 対象

• 戸建住宅、集合住宅

② 取組内容

- 再生可能エネルギー設備の導入など住宅のZEH化を促進
- 断熱性能を高めた新潟県版雪国型 ZEH について、普及と啓発を図る
- 国の支援策活用サポート

③ 効果

- 戸建住宅、集合住宅におけるエネルギー消費量の削減
- 家庭における再生可能エネルギー由来電力の普及
- 断熱性能の向上による冷暖房費用の削減
- 建物内における快適性の向上(健康面におけるメリット)

図 ZEH のイメージ

出典:一般社団法人環境共創イニシアチブホームページ(https://sii.or.jp)

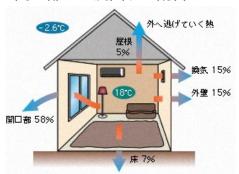
④ 支援事業

	及于木	
囲	戸建住宅ネット・ゼロ・エネ	・ZEH 基準を満たした新築住宅を建築・購入する
	ルギー・ハウス(ZEH)化等	個人への支援
	支援事業(環境省)	·補助率 定額、上限額 55 万円
	長期優良住宅化リフォーム	・良質な住宅ストックの形成や、子育てしやすい生
	推進事業(国土交通省)	活環境の整備等を図るため、既存住宅の長寿命化
		や省エネ化等に資する性能向上リフォームや子育
		て世帯向け改修等に対する支援
		·補助率 1/3 限度額 100~200万円/戸
	住宅エコリフォーム推進事	・開口部、躯体等の断熱化工事、設備の効率化に係
	業(補助金:国土交通省)	る工事に対する支援
		・改修後に耐震性が確保されることが必要
	住宅・建築物省エネ改修推	・国による直接補助は、令和6年度末までに着手し
	進事業(交付金:国土交通	たものであって、改修による省エネ性能が ZEH
	省)	レベルとなるものに限定する。
		・補助率(交付金の場合)
		省エネ診断・省エネ設計 2/3
		省エネ改修 対象工事費の 23%(仕様毎上限額
		あり)
	住宅・建築物安全ストック形	・住宅・建築物の耐震性等の向上に資する取組にお
	成事業(国土交通省)	いて、省エネ改修を同時に実施する場合に、省エ
		ネ改修工事費分を加算して支援
		·補助率 1/3 上限 1,025 千円他
	こどもみらい住宅支援事業	・子育て支援及び 2050 年カーボンニュートラル
	(国土交通省)	の実現の観点から、子育て世帯や若者夫婦世帯に
		よる高い省エネ性能を有する新築住宅の取得や
		住宅の省エネ改修等に対する支援
		·新築(ZEH) 100 万円
		・リフォーム 30万円
	次世代 ZEH+(注文住宅)	・ZEHの定義を満たしているとともに、追加条件を
	実証事業(経済産業省)	満たした戸建て住宅への支援
		·補助額 100 万円

1-2 住宅リフォーム支援

(1) 対象

• 戸建住宅、集合住宅


② 取組内容

- 住宅を長く使い続けることを支援すると ともに、住宅の外壁、屋根・天井・床また は窓の断熱改修等のリフォームを支援
- 国・県の支援策活用サポート

③ 効果

- 戸建住宅、集合住宅の高断熱化による エネルギー消費量の削減
- 冷暖房に伴う費用の削減
- 建物内における快適性の向上(健康面におけるメリットあり)
- 建物の長寿命化

●冬の暖房時の熱が 開口部から流出する割合は **58%**

●夏の冷房時(昼)に 開口部から熱が入る割合は **73%**

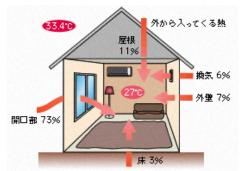


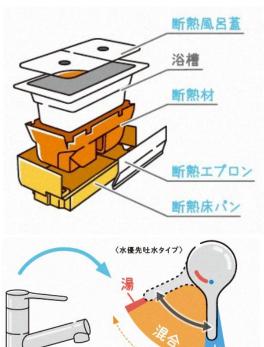
図 建物開口部からの熱の出入りの状況 出典:一般社団法人 日本建材・住宅設備産業協会 HP (https://www.kensankyo.org/)

④ 支援事業

国	既存住宅における断熱リフ	・既存住宅の断熱リフォームに対する支援
	ォーム支援事業(環境省)	·補助率 1/3 以内、上限額 15~120 万円/戸
	次世代省エネ建材の実証支	・既存住宅の高性能断熱材等を用いたリフォームに
	援事業(経済産業省)	対する支援
		·補助率 1/2 以内、上限額 20~300 万円/戸
	長期優良住宅化リフォーム	・既存住宅の長寿命化や省エネ化等に資する性能
	推進事業(国土交通省)	向上リフォームに対する支援
		·補助率1/3以内、上限額 100~200 万円/戸
県	新潟県産材の家づくり支援	・県産材を一定量以上利用した住宅の新築・増改築
	事業	への支援
		・定額 5万円

1-3 住宅の省エネ設備導入

① 対象


• 戸建住宅、集合住宅

② 取組内容

- 住宅のリフォームとともに、高効率給湯器 (エネファーム、エコキュート等)、高断熱浴 槽、節水型トイレ、節湯水栓、太陽熱利用シ ステム等の熱エネルギー設備の導入が進 むように設置を支援。省エネ設備等につい ても支援対象
- 国の支援策活用サポート

③ 効果

- 住宅等における設備機器の高効率化によ るエネルギー消費量の削減
- 光熱費の削減

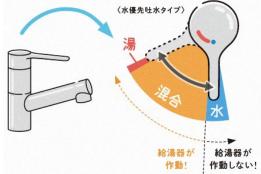


図 高断熱浴槽(上)、節水·節湯水栓(下) 出典:省エネリフォーム紹介 BOOK(環境省)

④ 支援事業

玉	既存住宅における断熱リフ	・既存住宅の断熱リフォームに対する支援
	オーム支援事業(環境省)	·補助率 1/3 以内、上限額 15~120 万円/戸
	次世代省エネ建材の実証支	・既存住宅の高性能断熱材等を用いたリフォームに
	援事業(経済産業省)	対する支援
		·補助率 1/2 以内、上限額 20~300 万円/戸
	長期優良住宅化リフォーム	・既存住宅の長寿命化や省エネ化等に資する性能
	推進事業(国土交通省)	向上リフォームに対する支援
		·補助率1/3以内、上限額 100~200 万円/戸

1-4 公衆街路防犯灯の LED 化

① 対象

• 町内会等が所有する防犯灯

② 取組内容

- 町内会等の団体が所有する防犯灯について、水銀灯や蛍光灯から LED への取替えや電気料金を支援
- 市が管理する防犯灯の LED 化を推進

③ 効果

- 防犯灯の高効率化によるエネルギー消費量の削減
- 照明の長寿命化に伴う維持管理コストの削減

写真 LED 公衆街路灯 出典:パナソニックホームページ (https://holdings.panasonic/jp/)

プロジェクト2 自家用車の EV 化

■ プロジェクト概要

家庭部門において CO_2 を削減するためには、従来の化石燃料由来の自動車から EV 車 (電気自動車)や PHV車(プラグインハイブリッド車)、FCV車(燃料電池自動車)等の次世代自動車へ再生可能エネルギー由来電源(住宅の太陽光発電設備等の設置)との組み合わせによる乗り換えを進めることが有効です。また自動車利用の効率化を通じて省エネ化を図ることもできます。このため、積極的な次世代自動車や充電インフラの導入を進める「EV 車等の導入促進」、集合住宅や団地等における自動車のシェアリングを通じて利用の効率化を図る「EV カーシェアリングの導入」を進めます。

2-1 EV 車等の導入促進

(1) 対象

- 車両導入:市民
- 充電·充放電設備導入:個人住宅、 集合住宅

② 取組内容

- EV、PHV、PHEV、FCV の購入を 促進
- 個人住宅の充放電(V2H)設備、集 合住宅への充電・充放電設備の設 置に国の補助事業の活用を促進
- 国の支援策活用サポート

EV や PHV に蓄えられた電気を家庭で利用するためには、専用の V2H 機器が必要です。

EV や PHV のバッテリーに蓄えられた電気は、乾電池と同じ「直流」という種類です。一方、家庭用の電気は「交流」です。このため、EV や PHV の電気は、そのままの状態では家庭で利用することができません。そこで、直流から交流、交流から直流に変換するための V2H 機器を設置する必要があります。

図 EV 等の電力を家庭で利用するために (V2H の必要性について)

出典:東京電力ホームページ https://www.tepco.co.jp)

③ 効果

- EV、PHV、PHEV、FCV 等の導入を通じた自動車利用により、化石燃料の使用量 削減、再生可能エネルギー由来電源との組み合わせによるゼロカーボン・ドライブの 実現
- 住宅への充電・充放電設備の設置による利便性の向上
- EV 車のバッテリーは、災害発生時における非常電源としての活用が可能

④ 支援事業

国 クリーンエネルギー自動車導入促進補助金(経済産業省) クリーンエネルギー自動車の 普及促進に向けた充電・充て んインフラ等導入促進補助金 (経済産業省)

- ・EV、PHEV、FCV 等の購入に対する支援
- ·上限額 45~255 万円(車種により異なる)
- ・充電設備や、電動車から電気を取り出すための外部給電機能を有する V2H 充放電設備や外部給電器の導入支援
- ·補助率 1/3~10/10 以内

2-2 EV カーシェアリングの導入

(1) 対象

市営住宅、学生寮、コミュニティセンター等

② 取組内容

- 市営住宅、学生寮、コミュニティセンター等で EV カーシェアリングの導入を促進するため、先進事例の情報発信や、ニーズ調査、実証実験に取り組む団体等を支援
- 国の支援策活用サポート

③ 効果

• EV の導入を通じた自動車利用により化石燃料から脱却し、再生可能エネルギー由来電源との組み合わせによるゼロカーボン・ドライブの実現

図 EV カーシェアリング (上:カーシェア車両、下:アプリによるステーションの位置確認の様子)

出典:eemo ホームページ (https://www.eemo-share.jp)

- 自動車のシェアリングにより、個人の所有台数が減少することで、自動車運用の効率 化による温室効果ガスの排出削減
- EV 車のバッテリーは、災害発生時における非常電源としての活用が可能
- カーシェアリングを通じたコミュニティ活動の活性化

④ 支援事業

国 再エネ×電動車の同時導入 による脱炭素型カーシェア・ 防災拠点化促進事業(環境 省)

- ・再工ネ設備と EV 車等を同時購入し、シェアリン グする取組を支援
- ・補助率 1/3~10/10 以内、上限額 定額(一部 上限あり)

対象部門 : 産業部門、店舗・オフィス部門

プロジェクト3 事業所での省エネ導入

■ プロジェクト概要

事業所や店舗等のエネルギー利用において、空調や照明利用によるものの割合は高く、省エネ化と節電を進めるためには、エネルギー効率の高い設備機器への取換えが有効です。このため、「事業所等の ZEB 化」を通じて建物の性能を高めるとともに、「高効率機器の導入」を通じて古くなった施設機器の入れ換えを促進し、エネルギー消費の高効率化を図ります。

3-1 事業所等の ZEB 化

① 対象

• 事業所、店舗等

② 取組内容

- 事業所、店舗等の ZEB 化を促進
- 国・県の支援策活用サポート

③ 効果

- 事業所、店舗等におけるエネルギー消費量の削減
- ZEB 化による脱炭素電力の普及
- 建物内における快適性の向上(健康面におけるメリット)

図 ZEB のイメージ 出典:環境省ホームページ (https://www.env.go.jp)

-	用	レジリエンス強化型 ZEB 実	・災害発生時に活動拠点となり感染症対策も備え		
		証事業(環境省)	たレジリエンス強化型の ZEB への支援		
			·補助率 1/2		
		建築物等の脱炭素化・レジ	・業務用施設の ZEB 化・省 CO2 化に資する高効		
		リエンス強化促進事業(環境	率設備等の導入への支援		
		省)	·補助率 1/3		
-	訓	ZEB 設計費補助金	・ZEB建設に必要な設計費の上乗せ相当分の一部		
			を補助		
			・補助率 1/2、上限額 125 万円~230 万円		

3-2 高効率機器の導入

① 対象

• 事業所、店舗 等

② 取組内容

- 事業所、店舗等での LED 等の 高効率照明機器や高効率空調 設備等の導入を支援
- 国・県の支援策活用サポート

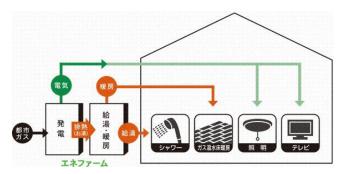


図 高効率給湯器(家庭用燃料電池システム) 出典:一般社団法人リビングアメニティ協会ホームページ (https://www.alianet.org)

③ 効果

- 事業所、店舗等のエネルギー消費量の削減
- 光熱費の削減

国	先進的省エネルギー投資	・先進的省エネ設備の導入に対する支援
	促進支援事業費補助金(経	・補助率 定額、上限額 上限1億円、下限20万円
	済産業省)	
	建築物等の脱炭素化・レジ	・業務用施設の ZEB 化・省 CO2 化に資する高効率
	リエンス強化促進事業(環	設備等の導入を支援
	境省)	·補助率 2/3 以内
県	新潟県価格高騰対応設備	・県内中小企業等における省エネルギー設備の導
	導入補助金	入への支援
		・補助率 3/4 以内、上限額 150 万円
	新潟県環境保全資金融資	・中小企業者のエネルギー有効利用施設の設置へ
	制度	の支援
		·融資額 2,000 万円以内、年利率 2.15%

プロジェクト4 事業所での EV 化

■ プロジェクト概要

事業所で利用する車両の CO₂排出量を削減するためには、化石燃料の使用が少ない次世代自動車への乗り換えを進めることが有効です。また、長距離運転の少ない営業車から EV 化を検討していくことも効果的です。このため、積極的に次世代自動車や充電インフラの導入を進める「事業者の EV 車等導入促進」を図ります。

4-1 事業者の EV 車等導入促進

(1) 対象

- 車両導入:事業者
- 充電·充放電設備導入:事業所、 商業施設 等

② 取組内容

- 国、県の支援策活用サポート
- EV、PHV、PHEV、FCVの購入を 促進
- 事業所、商業施設への充電・充放 電設備の設置を促進

③ 効果

- EV、PHV、PHEV、FCVの導入を 通じた自動車利用により、化石燃料の使用量削減、再生可能エネル ギー由来電源との組み合わせによ るゼロカーボン・ドライブの実現
- 事業所、商業施設への充電·充放 電設備の設置による利便性の向 上
- EV 車のバッテリーは、災害発生時 における非常電源としての活用が 可能

バッテリー(蓄電池) に蓄えた電気でモ ーターを回転させて 走る自動車。 搭載したバッテリー (蓄電池)に外部から給電できるハイブリッド車。バッテリー (蓄電池)に蓄ま池)に蓄までモーターを回転させるか、ガソリンでエンジンを動かして走る。 充填した水素と空 気中の酸素を反応 させて、燃料電池で 発電し、その電気で モーターを回転させ て走る自動車。

ゼロカーボン・ドライブとは、太陽光や風力などの再生可能エネルギーを使って発電した電力(再エネ電力)と電気自動車(EV)、プラグインハイブリッド車(PHEV)、燃料電池自動車(FCV)を活用した、走行時の CO2排出量がゼロのドライブのことです。

図 ゼロカーボン・ドライブについて 出典:環境省ホームページ(https://www.env.go.jp)

E THEFT WITH			
国	電気自動車の充電シフト	・ダイナミックプライシング(需要に応じて価格を変	
	実証事業(経済産業省)	動させる)による電動車の充電シフト実証事業	
		・補助率 1/2、上限額 75 万円	
	クリーンエネルギー自動車	・EV、PHEV、FCV 等の購入に対する支援	
	導入促進補助金(経済産業	・上限額 45~255 万円(車種により異なる)	
	省)		
	クリーンエネルギー自動車	・充電設備や、電動車から電気を取り出すための外	
	の普及促進に向けた充電・	部給電機能を有する V2H 充放電設備や外部給	
	充てんインフラ等導入促進	電器の導入支援	
	補助金(経済産業省)	・補助率 1/3~10/10 以内	
	地域交通グリーン化事業	・事業用として使用する次世代自動車及び充電設	
	(国土交通省)	備の導入支援	
		・補助率 1/5~1/3	
県	新潟県環境保全資金融資	・中小企業者の低公害車の購入、エネルギー有効	
	制度	利用施設の設置への支援	
		・融資額 2,000 万円以内、年利率 2.15%	
	新潟県次世代タクシー等	・タクシー事業者が行う次世代タクシー等の導入に	
	導入促進事業	要する経費を一部補助	
		(電気自動車等タクシー)	
		・補助対象経費―236 万円 上限額 60 万円/台	
		(充電設備) 補助率 1/4	

対象部門 : 交通部門

プロジェクト 5 公共交通利用促進

■ プロジェクト概要

本市は新潟県に比べて乗用車など交通部門の CO₂排出量の割合が高く、鉄道やバスをはじめとした公共交通機関の利用は、エネルギー効率が高いため、移動における省エネ化を進める上で効果的です。このため、市民生活や事業活動に伴う移動について、「<u>公共</u> 交通の利用促進」「公共交通への EV 車等導入促進」を進め、省エネ化を図り、地球温暖化の要因となる温室効果ガスの排出削減を推進します。

5-1 公共交通の利用促進

① 対象

• 市民、職場組織、交通事業者

② 取組内容

- 市民や事業所等に対して行動変容を 促進し、積極的な公共交通の利用を 促す。ゼロカーボン・ドライブに向け ての取組を実施
- 国の支援策活用サポート
- EVバス等を活用した市民の環境意 識の啓発、子どもたちへの環境教育

③ 効果

• 公共交通を利用することによる温室 効果ガスの排出量削減

写真 バスの乗り方教室

国	地域交通グリーン化事業	・事業用として使用する次世代自動車及び充電設
	(国土交通省)	備の導入を支援
		·補助率 1/5~1/3

5-2 公共交通への EV 車等導入促進

① 対象

公共交通事業者、地域公共交通NPO法 人等

② 取組内容

- バスやタクシー、福祉車両等に対する EV 車等のエコカー導入や充電設備の設置を 促進
- 地域公共交通に対するエコカー車両の導入を促進
- 国、県の支援策活用サポート

写真 EV バス

③ 効果

- EV、PHV、PHEV、FCV の導入を通じた自動車利用により、化石燃料の使用量削減、再生可能エネルギー由来電源との組み合わせによるゼロカーボン・ドライブの実現
- 災害発生時における非常電源としての活用が可能
- EV バス、EV タクシー利用における脱炭素化の実現

国	電気自動車の充電シフト	・ダイナミックプライシング(需要に応じて価格を変
	実証事業(経済産業省)	動させる)による電動車の充電シフト実証事業
		·補助率 1/2、上限額 75 万円
	クリーンエネルギー自動車	・EV・PHV 用充電設備の導入に対する支援
	の普及促進に向けた充電・	·補助率 1/2~10/10 以内
	充てんインフラ等導入促進	
	補助金(経済産業省)	
県	新潟県環境保全資金融資	・中小企業者の低公害車の購入、エネルギー有効利
	制度	用施設の設置への支援
		·融資額 2,000 万円以内、年利率 2.15%
	新潟県次世代タクシー等	・タクシー事業者が行う次世代タクシー等の導入に
	導入促進事業	要する経費を一部補助(電気自動車等タクシー)
		·補助対象経費—236 万円 上限額 60 万円/台
		(充電設備) 補助率 1/4

対象部門 : 行政部門

プロジェクト6 公共施設での省エネ推進

■ プロジェクト概要

公共施設においても、民間の事務所や店舗等の施設と同様に、空調や照明の高効率化は重要です。このため、国等の有利な財源を活用して順次、「公共施設の ZEB 化」「公共施設における照明の LED 化」及び「道路施設等における照明の LED 化」「高効率空調機器への入替」を推進します。

6-1 公共施設の ZEB 化

① 対象

- 今後、基本・実施設計を行う新築の 公共施設
- ・米百俵プレイス西館・東館 (※公共施設「米百俵プレイスミライ 工長岡」が入居)

② 取組内容

- 今後新築する公共施設は、原則として ZEB Oriented 相当以上とする
- 米百俵プレイス西館・東館において 先行してZEB化を実施(クール・ヒ ートトレンチシステムを導入して再 エネも推進)

図 米百俵プレイス完成予定図

③ 効果

- 建築物の ZEB 化によるエネルギー消費量の削減
- 公共施設の取組による市民の意識向上

④ 支援事業

国 「官庁施設の環境保全性基準」の改定(国土交通省)

・官庁施設が確保すべきエネルギー消費性能として、政府実行計画に基づき、新築する場合は原則 ZEB Oriented 相当以上とすることを規定

6-2 公共施設における照明の LED 化

① 対象

• 公共施設(市有施設)

② 取組内容

主な施設の2030年度の設置完了に向け、省エネ効果の高い施設から LED 照明を計画的に導入

③ 効果

- エネルギー消費量の削減
- 照明の長寿命化に伴う維持管理コストの削減

写真 執務室の LED 照明

6-3 道路施設等における照明の LED 化

①取組対象

• 道路照明 等

② 取組内容

• 道路照明やトンネル照明等について、新 設時・更新時の LED 化を推進

③ 効果

- エネルギー消費量の削減
- 照明の長寿命化に伴う維持管理コスト の削減

写真 LED 公衆街路灯 出典:パナソニックホームページ (https://holdings.panasonic/jp/)

6-4 高効率空調機器への入替

① 対象

• 公共施設(市有施設)

② 取組内容

空調機の更新時期を迎えた施設から順次、高効率機器への入替えを推進

③ 効果

• 空調機の高効率化によるエネルギー消費量の削減

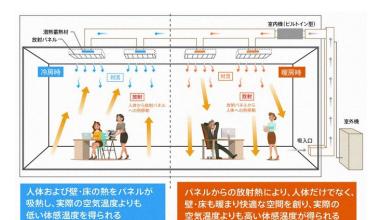


図 高効率空調機システムの例 (天井放射冷暖房空調システム)

出典:環境省ホームページ(https://www.env.go.jp)

プロジェクト 7 公用車の EV 化

■ プロジェクト概要

市の公用車 837 台(2022 年 9 月時点)の次世代自動車への切り替えを進めていきます。さらに、公共施設における充電インフラの導入を通じて、公用車だけでなく来庁者等の利便性や災害時のレジリエンス向上につなげます。そのため、「公用車における EV車等導入」「EV カーシェアリングの実証実験」「EV 充電器の設置」や「ソーラーカーポート設置実証実験」に取り組みます。

<u>7-1 公用車における EV 車等導入</u>

① 対象

公用車(普通車、軽自動車、バス、福祉車 両、スクールバス等)

② 取組内容

• 稼働頻度や使用距離に応じて導入可能 な公用車のEV化を計画的に実施すると ともに、公用車台数を削減

写真 生ごみバイオガス発電センターで 充電中の電気自動車

③ 効果

- EV、PHV、PHEV、FCVの導入を通じた化石燃料の使用量減少
- EV車のバッテリーは、災害発生時における非常電源としての活用が可能
- EV車等の率先導入を通じた市内への波及効果

④ 支援事業

国 地域レジリエンス・脱炭素 化を同時実現する公共施 設への自立・分散型エネル ギー設備等導入推進事業 (環境省)

- ・公共施設の再生可能エネルギー設備等導入を支援
- ・補助率 1/3、上限額あり

7-2 EV カーシェアリングの実証実験

① 対象

• 来街者、まちなか居住者 等

② 取組内容

• 来街者をはじめ、まちなか居住者 を対象に公用車を活用したEVカ ーシェアリングの調査研究

③ 効果

- EVの導入を通じた化石燃料の使用量減少
- 個人の所有台数が減少することで 温室効果ガスの排出削減
- EV車のバッテリーは、災害発生時 における非常電源としての活用が 可能

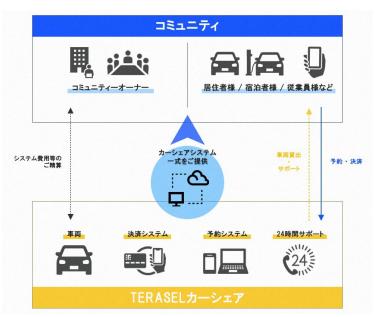


図 コミュニティ型 EV カーシェアサービスの例 出典:株式会社エネクスライフサービス (https://www.terasel.jp)

- 国 再エネ×電動車の同時導入 による脱炭素型カーシェア・ 防災拠点化促進事業(環境 省)
- ・再工ネ設備と EV 車等を同時購入し、シェアリン グする取組を支援
- ・補助率 1/3~10/10 以内、上限額 定額(一部 上限あり)

7-3 EV 充電器の設置

①対象

• 公共駐車場、観光交流施設 等

② 取組内容

• 公共駐車場や道の駅など効果の 高いところから、EV充電器の設置 を推進

③ 効果

- EV利用者の利便性の向上
- 観光交流施設等の利用者ニーズへの対応

	急速充電器 電源側:交流三相200V等 車側:直流450V		
電力仕様			
電力出力	10~200	10~200kW	
充電器 本体	10917	複数ロタイプ	
充電ケーブル	充電ケーブル付き		
充電スピード	急速に充電(30分で+50%程度充電可能)**2		
利用シーン	長距離移動の休憩時の継ぎ足し充電等(短時間駐車時)		
設置場所例	Parameter and the second below the total and a second below the second below the total and a second below the second below		
価格イメージ			

		普通充電	125	
電力仕様	1	電源側:交流単相100~200V	車側:交流100~200V	
電力出力		3~6k	W	
充電器 本体	壁面取付タイプ	スタンドタイプ	スタンド タイプ	壁面取付 タイプ
充電ケーブル	コンセントタイプ(充電	電ケーブル別)	充電ケー	ブル付き
充電スピード		緩やかに充電(8時間で+5	0%程度充電可能)*1	
利用シーン		買い物、宿泊時、勤務中	等(長時問駐車時)	
設置場所例 商業施設、宿泊施設、時間貸駐車場、マンション駐車場、事業所駐車場等			車場等	
価格イメージ	本体・工事価格ともに急速充電より安い			

図 EV 充電器の概要

出典:一般社団法人次世代自動車振興センターホームページ(http://www.cev-pc.or.jp/)

④ 支援事業

国 クリーンエネルギー自動車 の普及促進に向けた充電・ 充てんインフラ等導入促進 補助金(経済産業省)

- クリーンエネルギー自動車 | ·EV·PHV 用充電設備の導入に対する支援
 - ·補助率 1/2~10/10 以内

7-4 ソーラーカーポート設置実証実験

① 取組

• 公共施設(市有施設)

② 取組内容

• 公共施設敷地内にソーラーカーポートを設置し、市民や事業者への普及を促進

③ 効果

- EV利用者の利便性の向上及び必要な電力の一部確保
- 災害時において非常用電源として活用が可能

写真 ソーラーカーポートの例 出典:日経 BP ホームページ (https://www.nikkeibp.co.jp/)

田	クリーンエネルギー自動車	・EV・PHV 用充電設備の導入に対する支援
	の普及促進に向けた充電・	·補助率 1/2~10/10 以内
	充てんインフラ等導入促進	
	補助金(経済産業省)	
	建物における太陽光発電	・コスト要件を満たす場合にソーラーカーポートの
	の新たな設置手法活用事	導入支援
	業(環境省)	・補助率 1/3

6.4. 再生可能エネルギーの日常的な利用

対象部門 : 家庭部門

プロジェクト8 市民生活での再工ネ導入

■ プロジェクト概要

家庭部門でのエネルギー消費の大半は、住宅です。住宅のエネルギー使用について、 化石燃料由来のものから再生可能エネルギーに入替えていくことは、環境にやさしい快 適な住まいづくりにつながりエネルギー消費の削減につながります。このため、「<u>太陽光</u> **発電設備の導入**」を通じて、家庭における電気エネルギーの脱炭素化を促進します。

8-1 太陽光発電設備の導入

① 対象

戸建住宅、集合住宅ほか、民間建築物

② 取組内容

- 新築、既存住宅への太陽光発電設備 及び蓄電池の設置を促進
- 市民への普及啓発、情報発信
- 設備導入の促進に向けたシミュレーション調査と啓発活動
- 国の支援策活用サポート
- 再生可能エネルギーを導入する取組を支援

図 3D都市モデルを活用した太陽光発電のポテンシャル推計及び反射シミュレーションイメージ

③ 効果

- 家庭における脱炭素電力の普及
- 冷暖房に伴う光熱費の削減
- 太陽光発電及び蓄電池の設置によるエネルギーの地消地産、防災対策の強化

	2 4002 2 7 1 7			
ⅎ	ストレージパリティの達成に	・自家消費型太陽光発電設備や蓄電池の導入費用		
	向けた太陽光発電設備等の	の支援		
	価格低減促進事業(環境省)	·補助率 4万円/kW		
	新たな手法による再エネ導	・新たな手法による再生可能エネルギー設備の導		
	入·価格低減促進事業(環境	入に対する支援		
	省)	·補助率 1/2 以内		
	都市空間情報デジタル基盤	・3D 都市モデルを構築し、当該モデルを活用して		
	構築支援事業	行政課題を解決する(ユースケース)場合に支援		
	(Project PLATEAU)	·補助率 1/2以内		

対象部門 : 産業部門、店舗・オフィス部門

プロジェクト 9 事業所における脱炭素化の推進

■ プロジェクト概要

事業所、商業施設、工場等のエネルギー消費は、空調や照明の割合が高く、脱炭素化を進める上で、これらを再生可能エネルギーに代替することは重要です。このため、「再工ネ設備の導入」を通じて、事業所や商業施設等の脱炭素化を推進します。

9-1 再エネ設備の導入

(1) 対象

• 事業所、商業施設、工場 等

② 取組内容

- 事業所の太陽光発電設備 及び蓄電池等の設置を促進
- 再生可能エネルギーを導入 する取組を支援
- 国の支援策活用サポート

③ 効果

- 事業所、商業施設、工場等 における脱炭素電力の普及
- 光熱費の削減
- 太陽光発電及び蓄電池の 設置による、エネルギーの 地消地産、防災対策の強化

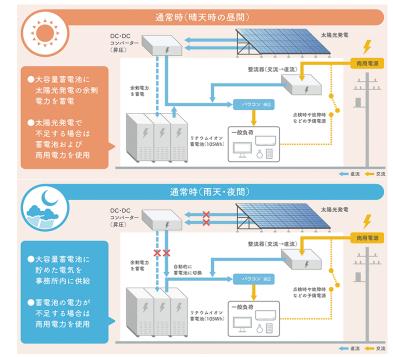


図 太陽光発電と蓄電池を連携した電力自立システム 出典:大和ハウス工業株式会社ホームページ (https://www.daiwahouse.co.jp)

	2 40/24 2 7 1 1			
国	PPA 活用等による地域の	・再エネ導入等による地域の再エネ主力化とレジリ		
	再エネ主力化・レジリエンス	エンス強化への支援		
	強化促進事業(環境省)	·補助率 1/3		
	需要家主導による太陽光発	・発電事業者や需要家自ら太陽光発電設備を設置		
	電導入促進補助金(環境省)	し、再生可能エネルギーを長期的に利用する契約		
		を締結する場合、太陽光発電設備の導入へ支援		
		·補助率 2/3 以内		
県	再生可能エネルギー設備導	・自家消費を目的とした再生可能エネルギー発電設		
	入促進事業	備・熱利用設備、蓄電設備等の導入を支援		
		・補助率 1/3 以内		

プロジェクト 10 ゼロエミッションエリア構築

■ プロジェクト概要

市内の工業団地等において、脱炭素地域の創出を目指し、再生可能エネルギーなどを 用いたマイクログリッドによる自立的に電源供給可能なエリアを作ることで、地域内で ゼロエミッションの実現を図るエリアを構築します。このため、工業団地等における「**マ** イクログリッドの実証実験」を進めます。

10-1 マイクログリッドの実証実験

(1) 対象

• 工業団地 等

② 取組内容

- 工業団地等のエリア内において、再生可能エネルギーや未利用熱等を最大限活用したマイクログリッド(自立分散型システム)の実証実験を通じてゼロエミッションエリアの拡大につなげる
- 民間事業者のマイクログリッド構築を支援
- ある一定のまとまりをもつ区域内において、再生可能エネルギーの導入によりCO₂ 排出量を実質ゼロにする「脱炭素先行地域」への選定を目指す

③ 効果

- エネルギーの地消地産の促進
- 災害発生時における防災対策の強化

図 地域マイクログリッドのシステムモデル例

出典:地域マイクログリッド構築の手引き(経済産業省)

- 国 地域共生型再生可能エネル ギー等普及促進事業(経済 産業省)
- ・地域マイクログリッドの構築への支援
- ·補助率 2/3 以内

プロジェクト 11 農業の脱炭素化推進

■ プロジェクト概要

農業分野においても脱炭素化の取組を進めることは重要です。このため、「<u>再エネ・省</u> エネ型農業設備の導入」を通じて、農業の脱炭素化を図ります。

11-1 再エネ・省エネ型農業設備の導入

① 対象

• 農地(水田、畑地 等)

② 取組内容

- スマート技術の導入、再エネ・省エ ネ化など、低炭素化や脱炭素化に つながる機械・施設の導入を奨 励・支援
- 国・県の支援策活用サポート

写真 スマート農業に向けたドローンの活用 出典:農林水産省 HP(https://www.maff.go.jp/)

③ 効果

- 農業機械・設備のエネルギー転換(電化、水素化)及び高効率化による低炭素化、再 生可能エネルギー電力使用による脱炭素化
- 農業の効率化による収益向上

围	みどりの食料システム戦略 推進総合対策(農林水産省)	・みどりの食料システム戦略及びみどりの食料システム法に基づき、環境負荷低減と持続的発展に向けた地域ぐるみのモデル地区を創出するとともに、環境づくりを支援
	担い手確保・経営強化支援 事業(農林水産省)	・農業経営の発展を図ろうとする担い手に対する農 業用機械・施設導入への支援
		·補助率 1/2 以内
	地域における太陽光発電の	・営農地、ため池を活用した太陽光発電について、設
	新たな設置場所活用事業	備導入への支援
	(環境省)	·補助率 1/2
県	新潟県農林水産業総合振興	(再生可能エネルギー利活用促進)
	事業	・再生可能エネルギーを活用した生産等のために必
		要な施設等の整備を支援
		·補助率1/2以内

対象部門 : 行政部門

プロジェクト12 公共施設・公有地活用

■ プロジェクト概要

市が所有・管理する施設には、行政庁舎、学校、コミュニティセンターや公共施設跡地(未利用公有地)のほか、多様な再生可能エネルギーの導入の可能性がある施設等が市内各地にあります。これらについて、FS 調査に基づいた「**雪国対応の太陽光発電設備 導入**」や、「次世代まちづくり推進」により、それぞれの効果的な再生可能エネルギーの 導入・検討を進めます。

12-1 雪国対応の太陽光発電設備導入

(1) 対象

• 公共施設、未利用公有地

② 取組内容

- 行政庁舎、学校、コミュニティセンターなどの公共施設や未利用公有地に、自家発電用の太陽光発電設備を設置
- 未利用公有地での民間活力による PPAの導入の検討

写真 寒冷地における太陽光発電の工夫 (栃尾地域)

③ 効果

- 公共施設における脱炭素化
- 自家発電による電気料の軽減
- 太陽光発電設備の設置工事に伴う地域経済への波及
- 防災対策の強化

④ 支援事業

国 太陽光発電の導入可能量拡 大等に向けた技術開発事業 (NEDO)

- ・太陽電池のさらなる導入拡大に向けた高効率太 陽電池の要素技術等の開発への支援
- ·補助率 10/10 以内

12-2 次世代まちづくり推進

①対象

• 市街地

② 取組内容

- 車中心から人中心の空間への転換を図り、「居心地が良く歩きたくなる」まちなかづくりを推進
- ウォーカブルなまちの形成に向けて、 立地適正化計画に基づき都市機能 及び居住を誘導
- EV・FCVを用いたバスやタクシー の導入やMaaSの実装等による公 共交通の利用を促進

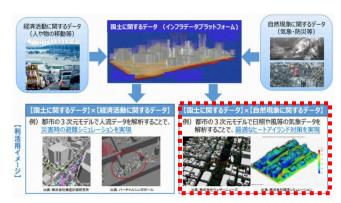


図 インフラデータプラットフォームイメージ

③ 効果

- 滞在空間の快適性の向上、まちのにぎわい創出による地域経済の振興
- 都市活動の最適化による温室効果ガスの排出削減
- まちなかにおける再生可能エネルギーを導入した公園整備による防災性の向上

国	まちなかウォーカブル推進	・「居心地が良く歩きたくなる」まちなかづくりに向
	事業(国土交通省)	けた公共空間等の整備への支援
		·補助率 1/2
	都市空間情報デジタル基盤	・3D 都市モデルを構築し、当該モデルを活用して
	構築支援事業	行政課題を解決する(ユースケース)場合に支援
	(Project PLATEAU)	·補助率 1/2以内
	地域共生型再生可能エネル	・再生可能エネルギー設備等を用いた、既存の系統
	ギー等普及促進事業(経済	線を活用した地域マイクログリッドの構築を支援
	産業省)	·補助率 2/3以内 上限額6億円

対象部門 : 研究・開発部門

プロジェクト 13 再工ネ普及に向けた実証実験

■ プロジェクト概要

カーボンニュートラルの実現には、市内における産業界の脱炭素化を支援し、市場での競争力を高めることが重要です。このため、再エネの導入促進に向けた「<u>再エネ設備</u> **導入の実証実験**」を行うとともに、本市の地産エネルギーである天然ガスを活用した次 世代エネルギー技術開発を進めるため、「GX (グリーントランスフォーメーション)分 野のイノベーション研究」を推進します。

13-1 再工ネ設備導入の実証実験

① 対象

• 民間事業者 等

② 取組内容

- 事業者からの提案を募集し公共施設、農地、未利用地での熱エネルギー、小水力、風力、バイオマス等の再エネの実証実験を実施
- 国・県の支援策活用サポート

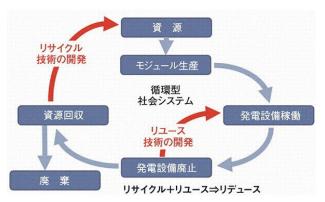


図 太陽光発電設備の資源循環フローのイメージ

出典:環境ビジネスオンラインホームページ (https://www.kankyo-business.jp)

③ 効果

再エネの技術開発と実用化による本市の産業振興

④ 支援事業

13-2 GX(グリーントランスフォーメーション)分野のイノベーション研究

① 対象

• 民間事業者等

② 取組内容

- 水素、メタネーション、燃料電池等の成長分野への企業支援
- 長岡地域での太陽光パネルのリサイクル体制を促進
- 地元企業への協力支援、情報発信

③ 効果

- エネルギーの脱炭素化の実現に向けた技術開発
- 技術開発、実用化の実現による本市の産業振興

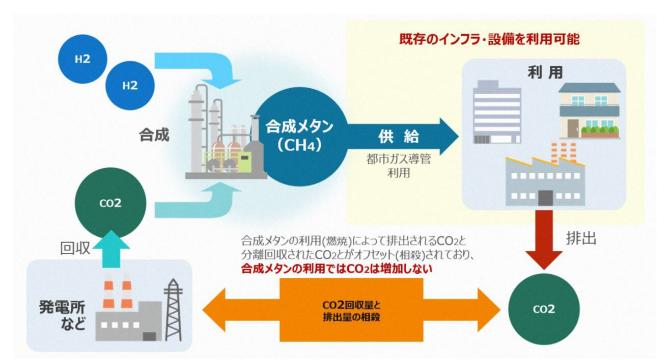


図 メタネーションによる CO₂排出削減効果のイメージ

出典:資源エネルギー庁ホームページ(https://www.enecho.meti.go.jp)

プロジェクト 14 環境・再エネビジネスの参入

■ プロジェクト概要

エアコンや冷蔵庫、パソコン、スマートフォンなど、電気を使うあらゆる機器のエネルギー効率を高める省エネ技術のさらなる開発は、カーボンニュートラルの達成に向けて取り組むことが求められています。

国内有数のパワーエレクトロニクス(効率的に電気を変換・制御する技術)の研究組織を有する長岡技術科学大学と長岡のものづくり産業などでは、産官学金の連携により、パワーエレクトロニクスをはじめ、省エネ・再エネ技術を活かした産業の振興を図ることで脱炭素化に貢献していきます。

14-1 技術開発とビジネス参入支援

① 対象

• 市内民間事業者

② 取組内容

- 環境分野や省エネ・再エネ技術 を活かした産業振興や、同分野 へのビジネス参入・マッチング を推進
- パワーエレクトロニクス分野に おける、人材(学生)の集積と企 業の集積を推進
- 国の支援策活用サポート

図 パワーエレクトロニクスのイメージ

出典:一般社団法人日本パワーエレクトロニクス協会 ホームページ(https://pwel.jp/)

③ 効果

- 省エネ・再エネ技術分野の産業振興
- 新たな起業創出と雇用創出

④ 支援事業

国 革新的パワーエレクトロニ クス創出基盤技術研究開 発事業(文部科学省)

・パワーエレクトロニクス回路システム領域、次々世 代・周辺技術領域の研究支援

·予算額 2~6 千万円程度/件

6.5. 地域資源の循環促進

対象部門 : 家庭部門

プロジェクト 15 市民生活の3R の定着

■ プロジェクト概要

各家庭から排出されるごみは、排出抑制、再利用、再生利用をした上で、どうしても 焼却しなければならないものについて焼却処理をしています。その際にサーマルリサイ クル (排熱利用) やバイオマスガスの活用など、エネルギー利用を図ります。このため、 市民生活での取組として、「食品ロス削減」「<u>リユース等普及拡大</u>」に努めるとともに、 「プラスチック資源循環」を積極的に推進していきます。

15-1 食品ロス削減

①対象

市民

② 取組内容

- 生活の中で食品ロスの現状や対策 などについて理解を深め、行動変容 を促す取組を推進
- 広報誌や市政出前講座等を活用したPR、啓発活動を実施
- 食品ロスを減らすマッチングの取組
- 国の支援策活用サポート

図 長岡市による食品ロス削減の呼びかけ例 (30・10 運動啓発用コースター)

③ 効果

- 廃棄物の排出抑制
- 食品の輸送、焼却に伴う温室効果ガスの排出削減

④ 支援事業

国 フードバンク活動支援(農 ・フードバンクにおける広域連携等の食品受入・提 株水産省) 供能力の強化を支援・補助率 1/2 以内、定額

15-2 リユース等普及拡大

① 対象

市民

② 取組内容

- リサイクル店舗、フリマア プリとのマッチング等を通 じて、リユースに向けた行 動変容を促す取組を推進
- ごみの減量化・資源化に 積極的に取り組んでいる 店舗を認定しPRすること で市民の利用促進を図る

図 リユースによる製品の使用年数延長効果と ごみの削減効果

出典:リユース読本(環境省)

③ 効果

- 廃棄物の排出抑制
- 製品の製造、廃棄物の焼却に伴う温室効果ガスの排出削減

15-3 プラスチック資源循環

① 対象

• 市民

② 取組内容

- 再資源化できるプラスチック製品の購入と分別処理を推進
- プラスチック使用製品の分別収集の検討
- 国の支援策活用サポート

写真 プラスチック容器包装材の分別作業

③ 効果

- 廃棄物の焼却に伴う温室効果ガスの排出抑制
- 再資源化による資源の循環利用、石油製品の削減

リサイクル方法		定義				
材料リサイクル プラスチック原料・製品に		異物を除去、洗浄、破砕その他の処理をし、ペレット等のブラスチック原料を得る。				
k->+11	油化	プラスチックを熱分解し、液体状の炭化水素油を得ること。再商品化で得られた炭化水素油は化学工業等の原材料又は燃料として利用。				
ケミカル リサイクル 化学的手法に	高炉還元剤化	プラスチックを粒状にし、製鉄高炉中の鉄鉱石の還元剤を得ること。再商品化で得られた還元剤は、高炉で利用されているコークスの代替品として利用。				
より、化学原料等を経て、 各種製品や燃料として利用	コークス炉化学原料化	コークス炉で粒状にしたプラスチックを石炭と共に加熱し、コークスを得ること。コークス炉内では、コークスだけでなく、炭化水素油、ガス等が製造される。炭化水素油については原材料、ガスについては燃料として利用。				
神として利用	ガス化	プラスチックを熱分解し、一酸化炭素、水素等のガスを得ること。再商品化で得られたガスは化学工業等の原材料又は燃料として利用。				
固形燃料等		固形燃料 (RPF) 等の燃料を得ること。 ※材料リサイクル・ケミカルリサイクルの2手法では ※緊急避難的・補完的手法 円滑な再商品化の実施に支障が生じる場合に利用				

図 プラスチックのリサイクル方法について

出典:知りたかった!!プラスチック容器包装(プラスチック容器包装リサイクル推進協議会)

王	廃プラスチックの資源循環	・プラスチック資源循環の実施に必要な機器等の導
	高度化事業(経済産業省)	入を行う事業への支援
		·補助率 1/2 以内
	脱炭素社会構築のための資	・プラスチック資源循環及び再エネ製品のリサイク
	源循環高度化設備導入促進	ル事業の支援
	事業(環境省)	·補助率 1/2 以内

対象部門 : 産業部門、店舗・オフィス部門

プロジェクト 16 長岡産天然ガスの地産地消

■ プロジェクト概要

越路地域の南長岡ガス田と呼ばれる国内最大級のガス田で生産された天然ガスは市内をはじめ、パイプライン輸送によって域外に供給されています。海外から輸入するLNG は輸送時の CO_2 排出がありますが、域内での生産のため CO_2 削減に大きく貢献しています。天然ガスは、石炭・石油に比べて燃焼させた際の、温室効果ガス(CO_2)の排出が少ないエネルギーであり、地域資源として、より効果的な活用が期待できます。このため、「天然ガスの利用促進」を通じて、従来の化石燃料からの置き換えを図るとともに、より付加価値の高い活用を促進していきます。

16-1 天然ガスの利用促進

(1) 対象

• 工場 等

② 取組内容

- 工場等で利用されている重油から 天然ガスへの転換を促進
- ガスコージェネレーションなど高 効率なシステム導入を支援
- 国の支援策活用サポート

③ 効果

- エネルギーの地消地産の振興
- 重油から天然ガスへの切り替えに よる温室効果ガスの排出削減

図 ガスコージェネレーションシステムの種類

出典:一般社団法人日本ガス協会ホームページ (https://www.gas.or.jp/)

④ 支援事業

国 災害時の強靭性向上に資す る天然ガス利用設備導入支 援事業費補助金(経済産業 省)

- ・災害時にも対応可能な天然ガス利用設備の導入 等への支援
- ・定額補助 10/10(上限あり)

プロジェクト 17 CO2 吸収源の活用と森林の若返り

■ プロジェクト概要

本市は市域の約半分を森林が占めており、豊かな自然環境が維持されています。森林は CO_2 の吸収源であるとともに、地元産木材の活用による炭素の固定など、カーボンニュートラルを実現する上で重要な役割を担います。このため、「<u>県産木材利用促進</u>」「<u>森</u>林整備の促進」を通じて森林の保全活用を促進します。

17-1 県産木材利用促進

対象

• 戸建住宅、集合住宅、事務所 等

② 取組内容

- 戸建住宅や集合住宅、事務所などの、木 造建築物において、官民問わず、県産木 材の利用を促進
- 木質バイオマスの活用
- 県産木材の供給体制の整備

写真 県産木材を使用した大ホール (栃尾地域交流拠点施設「トチオーレ」)

③ 効果

- 建築資材製造時における、エネルギー使用量の削減、温室効果ガスの排出削減
- 木材の資材利用による建築物への炭素(木の成長過程で吸収したCO2)の固定の定量化を通じたカーボンニュートラルへの寄与
- 県産木材の利用による林業振興

国	持続的林業確立対策(農林	・持続的な林業経営を確立するため路網整備や林
	水産省)	業機械導入等への支援
		・定額補助 1/2 以内
	林業·木材産業成長産業化	・国産材の供給力強化に資する木材加工流通施設
	促進対策(農林水産省)	等の整備への支援
		・定額補助 1/2 以内
県	新潟県産材の家づくり支援	・新潟県産材を使用して住宅を新築・リフォームす
	事業	る建築主に対して支援
		・県産材使用量5立法メートル以上15立法メートル
		未満の場合、3万円
		・県産材使用料15立法メートル以上の場合、5万円
		・その他、加算措置あり
	ふるさと新潟木づかい事業	・広く県民に県産材をPRすることを目的に、公共
		的施設や商業施設の木造、木質化等を支援
		・(1)と(2)の合計が補助金額
		・(1)県産材の使用に係る木工事費の1/2以内
		・(2)県産材の普及啓発用品に係る費用の1/2以
		内
		・県産材を使用した木造化・木質化等 200万円上
		限
		・県産材を使用した木造化・木質化等のうち、PR
		効果の高い施設 1,000万円上限

17-2 森林整備の促進

①対象

• 市内の森林

② 取組内容

- 計画的な森林整備(利用間伐、主伐・再 造林等)を促進
- 「伐って、使って、植える」森林の循環 利用サイクルの確立
- 森林経営管理制度を用いた集約化促 進による効率的な民有林整備
- 森林組合等の林業経営者が実施する 民有林整備に対して補助金による支 援を実施

写真 間伐によって集積された木材

③ 効果

- 森林整備面積の増加による林業振興
- 森林整備の促進によるCO2吸収効果の向上を通じたカーボンニュートラルへの寄与

国	国有林の整備	·利用間伐·路網整備
	財源の支援	·森林環境譲与税(森林環境税)、国補助金
県	県有林の整備	·利用間伐·路網整備
	財源の支援	·県補助金

プロジェクト 18 地域内資源の活用促進

■ プロジェクト概要

本市は、地域内に賦存する多様な資源を活用し、持続的な循環型の経済社会を目指します。このため、「長岡バイオコミュニティの推進」「農地土壌への炭素貯留促進」「BDFの製造推進」「カーボンクレジットの利用促進」を通じて地域内資源の活用を促進します。このほか、海洋資源を活用したブルーカーボンの研究も進めます。

18-1 長岡バイオコミュニティの推進

① 対象

- 市内民間事業者
- 大学 等
- 長岡市

② 取組内容

・ 未利用バイオマス資源の肥料化や生産時に生じる副産物の活用など、地域資源を活用したバイオ関連産業の創出。なお、肥料化にあたっては安全を担保しつつ、市民の理解促進を図る。

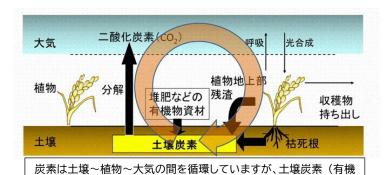
写真 生ごみの発酵残渣を活用した肥料の実証実験 (長岡農業高校)

③ 効果

- 地域内資源の有効活用
- 技術開発、実用化による本市の産業振興

18-2 農地土壌への炭素貯留促進

① 対象


• 農地(水田、畑地 等)

② 取組内容

- 有機質資材を用いた土づくり や炭化物による土壌改良剤の 施用など、土壌への炭素貯留 につながる取組を支援
- 国・県の支援策活用サポート

③ 効果

- 地域産未利用資源の有効活用
- 植物が吸収した大気中炭素の 土壌貯留による CO₂ 削減効果
- 環境と調和した食料・農林水産業
- 化学肥料の抑制によるエネルギー生産工程での CO2 削減

物)は、もともと植物が光合成で大気から吸収した炭素に由来するので、土壌中の炭素の量が増えると、その分だけ大気中の CO2 が減少した勘定になります。これを「土壌の炭素貯留」と呼びます。

図 農地における炭素循環と土壌の炭素貯留 出典:独立行政法人 農業環境技術研究所ホームページ (https://www.naro.affrc.go.jp)

国	みどりの食料システム戦略	・みどりの食料システム戦略及びみどりの食料シス
	推進総合対策(農林水産省)	テム法に基づき、環境負荷低減と持続的発展に向
		けた地域ぐるみのモデル地区を創出するととも
		に、環境づくりを支援
	環境保全型農業直接支払交	・化学肥料や化学農薬の使用量を原則5割以上低
	付金(農林水産省)	減する取組と合わせて行う、地球温暖化防止や生
		物多様性保全等に効果の高い営農活動(有機農
		業、堆肥の施用、カバークロップ(緑肥)等)を支援
	肥料高騰対策事業(農林水	・2030 年までに化学肥料使用量を 20%削減す
	産省)	る取組を支援
		・補助額 取組経費の7割程度
県	新潟県農林水産業総合振興	(環境保全型農業支援)
	事業	・土づくりの実践等による環境負荷軽減を図るため
		に必要な機械等の整備を支援
		·補助率1/2以内
	環境保全型農業拡大緊急支	・化学肥料や化学農薬の使用量を慣行比 50%削
	援事業	減する特別栽培農産物の作付面積を拡大する取
		組を支援
		·補助額 6,000 円/10a(上限)

18-3 BDF の製造推進

(1) 対象

- 長岡市BDF生産協議会
- 長岡市

② 取組内容

- 家庭や事業所からの廃食油(植物系)を積極的に収集するとともに、 BDF に精製し、代替ディーゼル燃料としての活用を促進
- 公共施設等に回収ボックスを設置 して、家庭から出る使用済み天ぷ ら油を回収し再資源化に協力

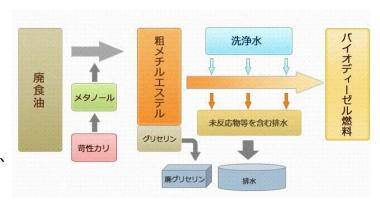


図 バイオディーゼル燃料の精製フロー(アルカリ触媒法) 出典:株式会社ポーラーズ研究所ホームページ (http://www.pollars.co.jp)

③ 効果

- 廃食油(植物系)の再資源化
- 化石燃料のバイオマス燃料への代替

【使用済天ぷら油の活用】

市では、家庭から出る使用済みの 天ぷら油を回収。回収した油は、バイ オディーゼル燃料等に再生し、軽油の 代替燃料に利用。

主な回収場所

- ●アピタ長岡店 1F リバーサイドアレー出入口
- ●長岡市社会福祉センター トモシア 1F
- ●川口支所を除く各支所 1 階
- ●環境衛生センター
- ●希望が丘資源物ステーション
- ●越路、三島、和島、寺泊支所車庫内
- ●川崎、宮内、大積、富曽亀、太田、阪之上、寺泊 コミュニティセンター

使用済み天ぷら油回収(持ち込み) https://www.city.nagaoka.niigata.jp/ kurashi/cate08/tenpura-gomi.html

【給油スタンド】

【BDF プラント】

写真 株式会社伊丹自動車

使用済みのてんぷら油などを再利用する地球にやさしいエネルギー「バイオディーゼル燃料(BDF)」。平成 18 年からBDFを製造し、二酸化炭素の削減などに取り組んでいます。

18-4 カーボンクレジットの利用促進

① 対象

• 省工ネ活動、森林管理 等

② 取組内容

- バイオマス、森林資源、海洋資源、カーボンニュートラルのガスや電気を活用した、J-クレジット制度の調査研究
- カーボンニュートラルガスやグリーン電力を選択する行動変容への醸成

③ 効果

- 市内における省エネ事業の普及
- クレジットの利用による事業活用に伴う CO₂排出のオフセット化
- クレジット販売による事業者の収益の向上

④ 支援事業

国	認証制度	<u> </u>
県	新潟県版 J-クレジット制度	新潟県カーボン・オフセット制度の展開

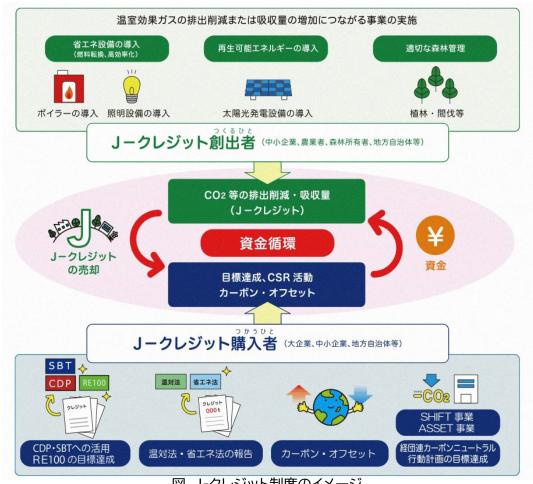


図 J-クレジット制度のイメージ

出典:J-クレジット制度ホームページ(https://japancredit.go.jp/)

対象部門 : 行政部門

プロジェクト19 処理施設での資源循環

■ プロジェクト概要

市が管理する施設のうち、上下水道施設など再生可能エネルギーが賦存する施設について、設備改修などを通じて再生可能エネルギーを活用します。このため、「<u>生ごみ発電施設の利用拡大</u>」「<u>ごみ焼却熱のエネルギー活用</u>」「<u>高濃度メタン発酵による下水道消化</u>ガスの活用」により、それぞれの効果的な再生可能エネルギーの導入を進めます。

19-1 生ごみ発電施設の利用拡大

① 対象

- 生ごみバイオガス発電センター
- 長岡中央浄化センター

② 取組内容

- 生ごみバイオガス発電センターでの 事業系生ごみ受入れを促進
- 下水消化ガスの活用によるバイオ ガス発電を推進

写真 収集した生ごみを活用している 生ごみバイオガス発電センター

③ 効果

- 燃やすごみ、CO₂排出量の削減
- 生ごみバイオガス発電センターにおける発電量の増加・安定化
- 市、生ごみバイオガス発電センター、長岡中央浄化センターの収益の増加

19-2 ごみ焼却熱のエネルギー活用

①対象

• 長岡市中之島新ごみ処理施設(仮称)

② 取組内容

 長岡市中之島新ごみ処理施設(仮称) (2024年4月稼働予定)へ高効率ごみ 発電設備(蒸気タービン)を導入し、ごみ 焼却に伴って発生する熱エネルギーを 利用した発電を実施

図 長岡市中之島新ごみ処理施設(仮称)

③ 効果

- 熱エネルギー利用による CO2 排出量の削減
- ごみ焼却により発生する熱エネルギーの有効活用
- 発電電力の自家消費による電力購入コストの削減
- 売電による収益の増加

④ 支援事業

国 循環型社会形成推進交付金 ・廃棄物処理施設整備等に対する財政措置 ・交付率 1/2 または 1/3

19-3 高濃度メタン発酵による下水道消化ガスの活用

①対象

• 小規模下水道処理施設

② 取組内容

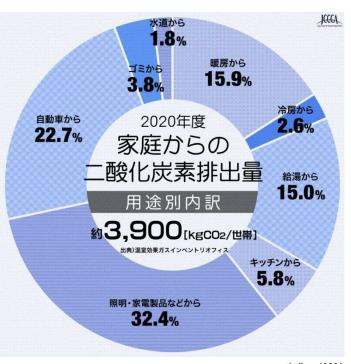
- 小規模下水道施設から発生する汚泥を高濃度メタン発酵処理することで得られる消化ガスを用いて、バイオガス発電を実施
- 下水道革新的技術として、中之島浄 化センターで実施、小規模処理場で の事業展開の検討

写真 高濃度メタン発酵処理装置

③ 効果

- 未利用消化ガスの有効活用
- 下水処理施設における脱炭素電力の活用
- 発電電力の自家消費による電力購入コストの削減
- 下水汚泥の処分量減

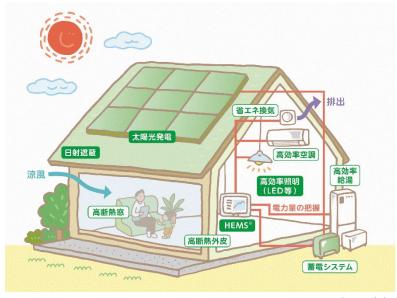
④ 支援事業


国 下水道脱炭素化推進事業 ・下水汚泥等を利用する創工ネルギー施設等 (国土交通省) ・補助率 1/2

6.6. 日常生活・企業活動における行動指針

6.6.1. 日常生活における取組

全国の各家庭から排出される CO_2 の内訳をみてみると、「照明・家電製品などから」が 32.4%で最も高く、次に高いのが「自動車から」で 22.7%、「暖房から」が 15.9%となっています。長岡市は特に冬は寒く、夏は暑い気候であることから、外気の影響を受けにくい高気密・高断熱の省エネ住宅が CO_2 削減に有効です。また、太陽光パネルの設置、EV 自動車の導入や公共交通、自転車の活用により、化石燃料の使用を極力減らす取組も効果的であるといえます。


以下に示すような住まいや日常生活の行動により、資源・エネルギーの消費を抑え、CO₂の排出を減らす取組に参加しましょう。

出典: JCCCA

① 創エネ・省エネ住宅に向けて

- ・新築や改築時には ZEH や省 エネ基準への対応を検討しま しょう。
- 断熱フィルム等を活用しましょう。
- ・家庭で使用する電力の消費 状況を把握しましょう。
- ∘災害時等における非常用電 力を確保しましょう。

出典:環境省

②再エネ・省エネ設備を使う

- ・太陽光発電等の再工ネ設備 の設置を検討しましょう。
- 太陽熱などの利用を検討しましょう。
- ・高効率給湯器(エネファーム、 エコキュート等)の設置を検 討しましょう。
- 。節水トイレ、高断熱浴槽、節水・節湯水栓を水回りに設置しましょう。

③省エネ型の機器を使う

- ・エアコン、テレビ、冷蔵庫、洗 濯機など、省エネ性能のよい ものを選びましょう。
- ・照明器具は LED に買い換え ましょう。
- 。EV車やハイブリッド車の購入を検討しましょう。

Groot 賢い選択★★★★★ SD 書 第電

4 冷暖房を効率よく使う

- ∘冷房は28度、暖房は20度 を基本にして設定しましょ う。
- ·夏はすだれやグリーンカーテン等で日差しを防ぎましょう。
- ∘冬は窓や床からの冷え、放熱 を防ぎましょう。
- 家族みんなで家の中に集まるクール・ウォームシェアをしましょう。

夏の直射日光による室内の温度の上昇を防ぐには、葉の十分に茂ったグリーンカーテンが効果的です。日射の熱エネルギーの約80%をカットする適蔵効果があります。すだれの遮蔽率が50~60%、高性能の遮蔽ガラスでも55%程度。いかにグリーンカーデンが優れているかがわかります。

COOL

WARM SHARE

暖房消して 温かいところに集まろう

⑤電気を無駄なく使う

- ∘使用していない時は、電源を オフにしてコンセントから抜 きましょう。
- 不要な照明や見ていないテレビ、使っていないパソコンなどは電源を切りましょう。
- 。お風呂は続けて入り、保温や 追い焚きを減らしましょう。
- ・冷蔵庫の中を整理し、扉の開 閉は素早く行いましょう。

6 自家用車の利用を減らす

- 。近所へ行くときは歩いたり、 自転車を使いましょう。
- ・バスなどの公共交通機関を 利用しましょう。
- カーシェアや車の相乗りを利用しましょう。

7容器包装を減らす

- ∘不要な包装やレジ袋を断りま しょう。
- ・詰め替え品や包装が簡易な 商品を選びましょう。

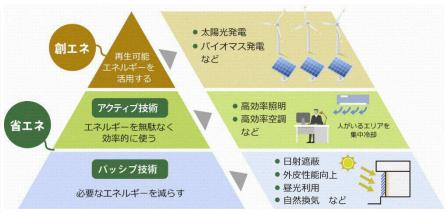
⑧地元の産物を選ぶ

- ・地元で作られた米や食料品、 菓子や酒などを選びましょう。
- 県産・国産木材で家を建てま しょう。

9物を上手に使う

- ∘余分、不要なものを買わない 習慣を身につけましょう。
- ・中古品やリサイクル製品を活用しましょう。
- ∘物を大切に長く使いましょ う。

⑪ごみを資源として活用


- ごみの分別をきちんと行い、 資源の回収に協力しましょ う。
- 野菜くずは、土に埋めたり堆肥にするなど、自家処理を行いましょう。
- ・廃食用油は、リサイクルのために回収に出しましょう。

6.6.2. 企業活動における取組

事業所のオフィス等では、以下に示すような行動によって、資源・エネルギーの消費を抑え、CO2の排出を減らす取組に参加しましょう。

①創エネ・省エネ事業所に 向けて

- ・新築や改築時には ZEB や省 エネ基準への対応を検討し ましょう。
- ∘断熱フィルムや断熱塗料を活 用しましょう。
- ・事業所で使用する電力の消費状況を把握しましょう。
- ∘災害時等における非常用電 力を確保しましょう。

出典:環境省

②再エネ・省エネ設備を使う

- 太陽光発電等の再工ネ設備の設置を検討しましょう。
- ガスコージェネレーション等の設置を検討しましょう。
- ·高効率な照明や空調を設置しましょう。
- ・デマンド監視装置を導入しま しょう。
- 冷凍庫などのメンテナンスを しましょう。
- ∘太陽熱などの利用を検討し ましょう。

③省エネ型の機器を使う

- オフィスで使用する機器は、 省エネ性能のよいものを選びましょう。
- ・照明器具は LED に買い換え ましょう。
- ・EV車やハイブリッド車を購入しましょう。

4冷暖房を効率よく使う

- 冷房は28度、暖房は20度を基本にして設定しましょう。
- ∘夏はすだれやグリーンカーテン等で日差しを防ぎましょう。
- 。クール・ウォームビズに取り 組みましょう。

⑤電気を無駄なく使う

- ∘使用していない時は、電源を オフにしてコンセントから抜 きましょう。
- ・使っていない照明やパソコン 等は電源を切りましょう。
- ∘冷凍庫などの設定温度を見 直しましょう。

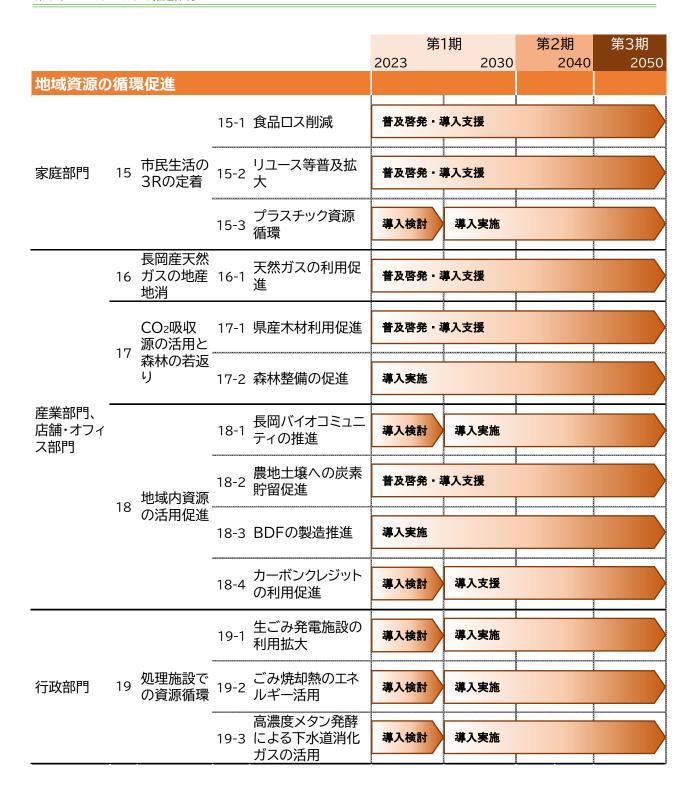
⑥事業所の敷地について

- ソーラーカーポートや太陽光 発電による外灯の設置を検 討しましょう。
- ・敷地の緑化や透水性舗装な どにより、遮熱・冷却を促進 しましょう。

⑦その他

- ∘公共交通や自転車による通 勤を推奨しましょう。
- 研修等により、カーボンニュートラルに対する理解と意識を高めましょう。
- 環境のことを考えた経営、マネジメントを行いましょう。

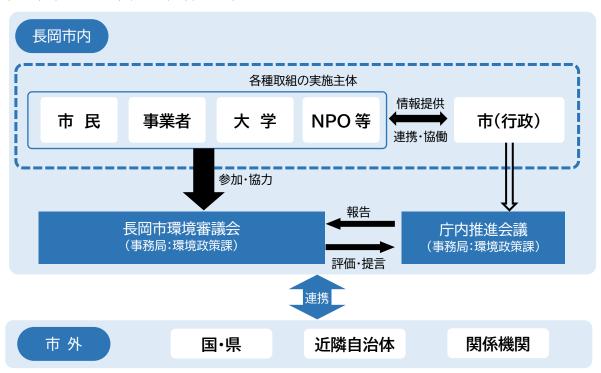
7. ロードマップと推進体制


7.1. 実現に向けたロードマップ

本戦略の実現に向けたロードマップを以下に示します。

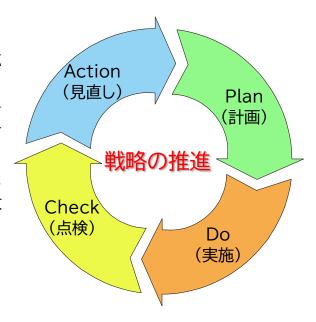
					第 ⁻ 2023	1期 2030	第2期 2040	第3期 2050
徹底した省エネ対策の推進								
			1-1 住宅のZEH化		普及啓発・	導入支援		
	1	市民生活での省エネ導	1-2	住宅リフォーム支 援	普及啓発	導入支援		
家庭部門	'	入	1-3	住宅の省エネ設備 導入	普及啓発	導入支援		
永庭 叫]			1-4	公衆街路防犯灯の LED化	導入支援・3	実施		
	2	自家用車の	2-1	EV車等の導入促 進	普及啓発・基	 亭入支援		
	2	EV化	2-2	EVカーシェアリン グの導入	実証実験	導入検証・	尊入実施	
	3	事業所での省エネ導入	3-1	事業所等のZEB化	普及啓発・	尊入支援		
産業部門、 店舗・オフィ ス部門			3-2	高効率機器の導入	導入支援			
	4	事業所での EV化	4-1	事業者のEV車等 導入促進	普及啓発・基	尊入支援		***************************************
交通部門	E	公共交通利用促進	5-1	公共交通の利用促 進	実証実験	導入実施		
义 世 印]	5		5-2	公共交通へのEV 車等導入促進	実証実験	導入実施		
			6-1	公共施設のZEB化	導入検討・	導入実施		
行政部門	6	公共施設での省エネ推	6-2	公共施設における 照明のLED化	導入実施			
I INDYALL	6	o の省エネ推・ 進	6-3	道路施設等におけ る照明のLED化	導入実施			
			,	6-4	高効率空調機器へ の入替	導入実施		

					第 ²	1期 2030	第2期 2040	第3期 2050	
			7-1	公用車におけるEV 車等導入					
√= ⊤ 6 ↑ 1122	_	公用車の	7-2	EVカーシェアリン グの実証実験	実証実験	導入検証・導入実施			
行政部門	./	7 EV化	7-3	EV充電器の設置	導入検討・	走施			
				7-	7-4	ソーラーカーポート 設置実証実験	導入検討・	美施	


				第 [·]	1期	第2期	第3期
				2023	2030	2040	2050
再生可能工	ネルギーの日常	的なネ	利用				
家庭部門	市民生活で 8 の再エネ導 入	8-1	太陽光発電設備の 導入	導入検討	導入実施		
	化の推進	9-1	再エネ設備の導入	普及啓発・基	夢入支援		
産業部門、 店舗・オフィ ス部門	ゼロエミッ 10 ションエリ ア構築	10-1	マイクログリッドの 実証実験	実証実験	導入実施		
	11 農業の脱炭 素化推進	11-1	再エネ・省エネ型農 業設備の導入	普及啓発・基	享入支援		
行政部門	公共施設・ 12 公本地区B	12-1	雪国対応の太陽光 発電設備導入	導入検討	導入実施		
	」。公有地活用	12-2	次世代まちづくり 推進	普及啓発・基	尊入支援		
	再エネ普及 13 に向けた実	13-1	再エネ設備導入の 実証実験	実証実験	導入支援		
研究·開発 部門	証実験	13-2	GX分野のイノベー ション研究	実証実験	導入支援		
	環境・再工 14 ネビジネス の参入	14-1	技術開発とビジネ ス参入支援	導入支援		導入実施	

7.2. 戦略の推進体制

本戦略の実現に向けては、「市民」「事業者」「大学」「NPO等」「市(行政)」の各主体が連携して取組を進めるための推進体制を確立し、施策や取組の進行管理を行うことが必要です。このため、各主体が積極的に取組を実践するとともに連携・協働を図り、目標の達成に向けて取り組みます。


また、戦略の進行管理にあたっては「長岡市環境審議会」に本戦略に掲げた目標期間の中間年次においてプロジェクトの状況を調査し報告を行うとともに、評価・提言を受けることで戦略の着実な推進を図ります。また、庁内関係部局による庁内推進会議を継続・設置し、計画の進捗管理を行います。

7.3. 戦略の進行管理

戦略の着実な推進を図るために、目標の達成 状況やプロジェクトの実施状況等について、 PDCA サイクル「Plan(計画) — Do(実行) — Check(点検) — Action(見直し)」を繰り返す ことで進行管理を行います。

具体的なプロジェクトに関係する事業などは 目標期間の中間年次において、点検・評価し、改 善等を行います。また、第2期及び第3期がス タートする際には、戦略の見直しを行います。

